
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001 307

Block-Based Neural Networks
Sang-Woo Moon and Seong-Gon Kong, Member, IEEE

Abstract—This paper presents a novel block-based neural
network (BBNN) model and the optimization of its structure and
weights based on a genetic algorithm. The architecture of the
BBNN consists of a two-dimensional (2-D) array of fundamental
blocks with four variable input/output nodes and connection
weights. Each block can have one of four different internal
configurations depending on the structure settings. The BBNN
model includes some restrictions such as two-dimensional array
and integer weights in order to allow easier implementation
with reconfigurable hardware such as field programmable logic
arrays (FPGAs). The structure and weights of the BBNN are
encoded with bit strings which correspond to the configuration
bits of FPGAs. The configuration bits are optimized globally
using a genetic algorithm with 2-D encoding and modified genetic
operators. Simulations show that the optimized BBNN can solve
engineering problems such as pattern classification and mobile
robot control.

Index Terms—Evolvable hardware, genetic algorithm, neural
network, structure optimization.

I. INTRODUCTION

A RTIFICIAL neural networks have been successfully
applied to diverse engineering problems due to their

model-free approximation capability to complex decision
making processes. Despite the success and the promise of
artificial neural networks in solving practical problems, their
design procedure still requires a trial-and-error. Obtaining
the optimal structure of artificial neural networks for a given
problem is one of typical problems in neural network design.
Popular multilayer perceptron (MLP) neural networks trained
using the backpropagation learning algorithm, for example,
provide a practical approach to pattern classification tasks
because of their postlearning processing speed and to their
wide range of applications, but the problem of determining its
structure has no general solution. Design of artificial neural
networks requires identification of network configuration and
associated parameters. Gradient-descent learning algorithms
that modify connection weights based on a error function gra-
dient have difficulties in determining optimal network topology
such as the number of nodes and connection configurations.
Training a neural network typically requires a human operator
to make many training runs with different choices of structural
and parameter settings. For practical purposes, neural-network
structure and connection weights should be optimized at the
same time.

Manuscript received January 4, 2000; revised July 31, 2000. This work was
supported by Brain Science and Engineering Research Program sponsored by
Korean Ministry of Science and Technology.

The authors are with Intelligent Signal Processing Lab, Department of
Electrical Engineering, Soongsil University, Seoul 156-743, Korea (e-mail:
skong@ee.ssu.ac.kr).

Publisher Item Identifier S 1045-9227(01)02038-0.

Another problem is hardware implementation of artificial
neural networks. Due to nonlinear activation functions and
real-valued connection weights of artificial neural networks,
their implementation based on digital hardware is not an easy
task. Hardware realization of artificial neural networks has
attempted mainly with analog devices [1], [2]. For neural
network hardware containing analog components, dynamic
reconstruction and on-line parameter update is a difficult task.

Evolutionary algorithms [3], [4], based on the mechanics of
natural selection and natural genetics, provide us with a solution
to the structure and weight optimization problems. The evolu-
tionary computation uses a problem-dependent fitness function
to search for the global optimum. Previous works in the field of
neural-network optimization with the evolutionary algorithms
include a method of finding optimal network structure by using
evolutionary computation dynamically while still using tradi-
tional gradient-based learning method [5]. Also, weight opti-
mization in fixed structure has been proposed to avoid local
minimum problems [6]. Both structure and weights are opti-
mized by evolutionary computation simultaneously [7]–[9]. The
competing conventions problem or the permutations problem
can occur when genetic algorithm is used for weight optimiza-
tion of feedforward multilayer neural networks [10]. To over-
come such problems, Montana and Davis [11] use intelligent
crossover and real encoding for connection weights. Korning
[12] optimizes neural-network connection by using binary en-
coding scheme and fitness function with entropy concepts. Ge-
netic algorithm has been successfully applied to neural network
optimization. Whitley [13], [14] determines the neural-network
structure by the GA with conventional gradient descent learning
algorithm. Vittorio [15] represents structure and weights by bi-
nary encoding, and determines network size by granularity. Ku-
magai [16] optimizes neural network with recurrent neurons by
the GA with internal copy operator.

In this paper, a novel block-based neural network (BBNN)
model is proposed in order to achieve simultaneous optimization
of network structure and connection weights. The BBNN con-
sists of a two-dimensional (2-D) array of basic neural-network
blocks with integer weights for easier implementation using re-
configurable hardware such as field programmable logic arrays
(FPGAs). The structure and internal parameters of an individual
BBNN are represented by fixed-length binary codes, which cor-
respond to network configuration bit strings of FPGAs to deter-
mine internal structures. The structure and weights of the BBNN
are encoded as a 2-D chromosome for easier partial on-line re-
configuration. The 2-D encoding method used in this paper dif-
fers from the multidimensional encoding [19] method. A genetic
algorithm evolves configuration bit strings to search for an op-
timal structure and weights setting of the BBNN among many
possible choices of structure and weight combinations. Simula-

1045–9227/01$10.00 © 2001 IEEE

308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Fig. 1. Structure of the block-based neural network (BBNN).

tions show that the BBNN with structures and weights obtained
by the genetic algorithm successfully solve pattern classifica-
tion and autonomous mobile robot control problems.

II. BLOCK-BASED NEURAL NETWORK MODEL

A. Architecture of the Block-Based Neural Network

The BBNN model consists of a 2-D array of basic blocks.
Fig. 1 represents the structure of the BBNN model of
size. Each block is labeled as . The first stage () and
the last stage () denote the input and the output stages,
respectively. The BBNN can have more than two middle stages.
The BBNN can have up to inputs and outputs. Re-
dundant inputs take a constant value and redundant outputs are
“don’t care.” Any block in the middle stages is connected di-
rectly with its neighboring blocks. The leftmost and rightmost
blocks are connected with each other. The incoming arrow to
a block denotes an input to the block, the outgoing arrow in-
dicates output. Output of nodes become inputs for their neigh-
boring blocks. For example, the output of block becomes
an input for block . The output of blocks at the same level
are calculated concurrently in order for system output to reflect
current input. The BBNN can be implemented using reconfig-
urable hardware by arranging the schematic design of each basic
block.

The structure of the BBNN defines signal flow represented
by the arrows between the blocks. This type of structure allows
signal flow in both forward and backward directions. Signal
flow determines automatically internal configuration or input-
output connections of basic blocks. Each block corresponds to
a simple feedforward neural network having four nodes which
are reconfigurable depending on network structure. The block
has four different types of internal configurations depending on
the input-output connections of the network structure. The dif-
ferent internal connections of the block allow far powerful gen-
eralization capabilities.

(a) (b)

(c) (d)

Fig. 2. Four different internal configuration types of a basic block. (a) 1/3. (b)
3/1. (c) 2/2. (d) 2/2.

Fig. 2 shows four different internal structures. The signal
flow between the blocks determines the I/O mode and thus
internal structure of the basic block. Fig. 2(a) and Fig. 2(b)
denote one input/three outputs and three inputs/one output
cases, respectively. Fig. 2(c) and Fig. 2(d) correspond to two
inputs/two outputs but with different internal connections.

and indicate the input and output of the block. All the
weights and biases have integer values for the purposes of easy
hardware implementation. BBNNs have problem-dependent
structures with both feedforward and feedback characteristics.
Basic blocks have three possible I/O modes or three different
internal structures: 1/3 (one input and three outputs), 2/2 (two
inputs and two outputs), or 3/1 (three inputs and one output).
The extreme case of all nodes becoming inputs (4/0) or outputs
(0/4) is not allowed.

Each node is characterized by an activation function.
Input nodes use a linear activation function, while the output
nodes use symmetric saturated linear activation functions for
hardware implementation. The output node can have bias
terms with a constant (=1) input. Fig. 3 shows the shape of the
symmetric saturating linear activation function with a gradient
of 1/ . For a more continuous output space with restricted
training patterns, the slope of the activation function will be
changed.

The BBNNs are designed for implementation using digital
hardware such as FPGA and other reconfigurable chips that
allow on-line partial reorganization. BBNNs have modular char-
acteristics. The size can be expanded by adding more basic
blocks. Network structure simply corresponds to determining
signal flows. Connection weights are learned by the GA-based
optimization procedure.

B. Characteristics of the BBNN

Let denote an MLP network with a
maximum number of neurons in each layer and a maximum
number of middle layers . And let denote the
connection weight between theth input neuron and theth

MOON AND KONG: BLOCK-BASED NEURAL NETWORKS 309

Fig. 3. Symmetric saturated linear activation function of the BBNN.

output neuron in the th basic block in the th stage.
(,).

Theorem 1: Let be the maximum number of weights of
the BBNN of size . Let be the maximum number of
weights of the MLP network . Then
for .

Proof: A basic block of the BBNN can have a maximum
number of weights, which is six including the bias, when all the
blocks are configured with the mode 2/2. The maximum number
of weights of the BBNN is . The maximum
number of weights of a fully connected MLP network with a
maximum number of neuronsin each layer and the maximum
number of middle layers equals .

For and , . Therefore
.
Theorem 2: Any connection weight of an MLP network is

represented by a combination of more than one weight of the
BBNN, if all the basic blocks are of mode 2/2.

Proof: Any connection weight betweenth neuron at th
layer and th neuron at ()th layer in the MLP MLP

is represented by a set of weights of th stage blocks
.

if

if

if

Theorem 3: A BBNN of represents the equivalent
structure of the MLP network .

Proof: According to Theorem 2, an BBNN can rep-
resent all the weights of the MLP network MLP .
Therefore the BBNN can represent the equivalent struc-
ture of the MLP .

(a)

(b)

Fig. 4. Two-dimensional encoding of the BBNN. (a) Chromosome
representation of a basic block. (b) Two-dimensional encoding.

The BBNN of size can represent successfully the
input–output characteristics of any MLP network for .
For example, both a 3-3-1 MLP and a 23 BBNN can clas-
sify three-bit odd parity patterns successfully. Since the BBNN
can represent both feedforward and feedback connection char-
acteristics, the BBNN can have an optimal structure for a given
problem by learning through evolutionary algorithms.

III. GENETIC ALGORITHM FOR EVOLVING BBNN

Optimization of the BBNN is composed of two tasks: struc-
ture and parameter optimizations. Structure optimization corre-
sponds to the determination of the internal configuration of each
block. Parameter optimization or learning is the process that de-
termines the connection weight values for given input-output
data. The search space is not continuous since BBNNs have in-
teger value of weights. In a discrete search space and for a small
amounts of training data, learning through evolutionary algo-
rithms is better than through gradient-based search algorithms.
Genetic algorithm finds the optimal solution in search space
consisted of chromosomes according to fitness function, which
represent a set of possible settings of structure and weights of
the BBNN.

A. Encoding

The structure of the BBNN determines the signal flow be-
tween the blocks, and the signal flow between the blocks de-
termines in turn the internal configuration or the input/output
mode of each block. In order to optimize structure and param-
eters simultaneously, network structure and connection weights
should be encoded in one chromosome at the same time. In con-
ventional multidimensional encoding, each gene is assigned to
one dimension. In this paper, the network structure and weights
of each block are assigned to a two-dimensional chromosome
in order to improve the performance of the crossover operation.

Fig. 4(a) represents a basic block chromosome a of the
BBNN. Fig. 4(b) shows the result of two-dimensional encoding
of the BBNN, whose component is a block encoded as in
Fig. 4(a). All the weights are encoded by four-bit binary
numbers. denotes connection weights, andshows structure.
Structure of BBNN is defined by signal flows. The value “0”
indicates downward() and leftward() signal flows , while
“1” denotes upward() and rightward() directions, respec-
tively. Signal flows are common for neighboring blocks, and
therefore adjacent blocks share the same signal flow arrows.
The first stage of the BBNN has input nodes which corresponds

310 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

to all “0” signal flows, while the last stage also contains all
“0” for output signal flow. The connection weight has value
from to with two zeros which means
the weight is disconnected. Equation (1) transforms positive
integer expressed by-bit binary number into integer value

from to

(1)

where

if

otherwise
(2)

Block-based neural networks have restrictions comparing to
other generally known neural-network models. The BBNNs are
designed for digital hardware implementation as FPGA that al-
lows on-line partial reorganization. This means that reconfig-
uration bit strings must be generated without the help of mi-
croprocessors. Binary encoding of the BBNN is advantageous
for digital hardware implementation and dynamic reconfigura-
tion. In order to convert the structure and weights to reconfigu-
ration bit strings by means of digital logic circuits, the BBNN
parameters should be represented by bit strings. A genetic algo-
rithm based on binary encoding has inherent shortcomings[17].
To overcome these problems, a modified encoding schemes and
genetic operations are used.

B. Genetic Operators

A stochastic selection by the roulette wheel method is a basic
reproduction mechanism used frequently in the genetic algo-
rithm. The roulette wheel selection method is based on the fit-
ness ratio, which has some weaknesses. In early stage of evolu-
tion, a chromosome with a larger fitness value than other chro-
mosomes has a high survival probability in the reproduction
process, which might cause premature convergence. Also, when
individuals converge to near solution, an average fitness might
be close to the population’s best fitness. If this is the situation,
the solution candidates with average and best fitness will have
nearly the same number of copies in future generations. Then
competition between individuals by genetic operators becomes
low, and so individuals wander around the solution.

To overcome this problem, one can reduce the relatively high
fitness values of the individual chromosomes, and the fitness
difference between the chromosomes can be scaled by the dis-
tribution of the individual state of all fitness. The fitness scaling
and ranking methods is one of the solutions for this problem
[18]. The fitness ranking method ranks the chromosomes by
fitness values and then redistributes fitness exponentially ac-
cording to rank. The fitness ranking method does not consider
the relation between object function and fitness. The linear fit-
ness scaling method scales all fitness using maximum, min-
imum, and average fitness by a linear function.

The linear fitness scaling considers the state of all fitness,
but if the average fitness is close to the maximum fitness, a fit-
ness less than the average fitness can be evaluated as a negative
value. To prevent evaluation as a negative fitness in the linear fit-
ness scaling procedure, a modified scaling procedure transforms
the maximum and average fitness to average and minimum fit-

Fig. 5. Generalized 2-D crossover operation.

ness when negative fitness values occur. The modified linear fit-
ness scaling method uses two different linear functions based on
maximum, minimum, and average fitness values to avoid nega-
tive fitness values and genetic drift.

if and

otherwise
(3)

Equation (3) shows the linear scaling functions for
each case. is the fitness of th chromosome and
is the scaled fitness of th chromosome. , ,

are the minimum, average, and maximum fit-
ness by object function, respectively. The parameters in
scaling functions are ,

, ,
and .

is a criterion for
in the linear fitness scaling procedure. is a linear scaling
constant and effects the slope of linear scaling function. In
general, for a small number of chromosomes, the slope takes
the range . This fitness scaling helps the evolution
scheme maintain evolution trend and diversity of individuals
as gets close to . Together with the modified linear
fitness scaling, elitist selection is used.

Genetic operators are modified in accordance with 2-D
encoding. A chromosome composed of multidimensional en-
coding considers three types of crossover operations, extended
from one-dimensional (1-D) encoding. First, one can select
a crossover point for each dimension. Next, selection of the
multicrossover point for each dimension is done, which is an
extension of the first method. Finally, one can fix the total
number of crossover points . The final
method is a generalized form, which allows a more diverse
schema than the crossover operations with fixed crossover
points.

Fig. 5 shows an example of a generalized multidimensional
crossover operation with and [19]. In the
case of a 2-D generalized crossover for 2-D encoding, having
one crossover point results in maintaining a variety of chromo-
somes and having two crossover points improves convergence.
Different mutation probabilities are applied to the structure and
weight optimizations bit in binary representation. denotes
the mutation probability of the structure, and also repre-
sents the mutation probability for the weights.

The transmission of data between the blocks has feedfor-
ward and feedback characteristics. The internal copy operator

MOON AND KONG: BLOCK-BASED NEURAL NETWORKS 311

which played an important role in improving the evolution per-
formance of neural network included a feedback characteristics
[16]. In this paper, the internal copy operator enables a sufficient
variety of all chromosomes after crossover. In 2-D encoding, a
chromosome selected by internal copy probabilitycopies a
part of the chromosome to other parts. The size and location of
the copy are randomly determined. For better performance, the
inversion operator searches for a solution by the information of
a chromosome selected by inversion probability. Structural
genes do not use inversion operators.

IV. OPTIMIZATION OF BBNN

A. Problem Definition

In order to verify the capability of the BBNN for solving
practical engineering problems, pattern classification tasks and
a mobile robot control problem were considered. First, the
exclusive-OR (XOR) and the four-bit symmetry problems are
used for showing the performance of pattern classification.
The XOR problem contains two inputs and one output. If
both inputs have the same values, the output equals1. The
output is one, if the inputs differ from each other. For the
four-bit symmetry problem, the output is set to one if two most
significant bits and two least significant bits
are symmetric; and 1, otherwise. Inputs of the BBNN are
normalized to have values between1 and 1, and the output
has values from 1 to 1 since the symmetric saturating linear
activation function is used. For mobile robot control problem,
the BBNN takes five inputs from sensors for successful navi-
gation in a path.

B. Genetic Algorithm Parameters

The genetic algorithm for the optimization of the BBNN
requires seven parameters: fitness scaling factor, crossover
probability , mutation probability for weight , mutation
probability for structure , internal copy probability ,
inversion probability , and population. All the parameters
in the pattern classification and robot control problems are
selected as the one not having premature convergence and
reaches the fastest in 20 repeated trials.

Table I shows all the parameters used in genetic evolution for
optimizing the BBNN. Parameters and are chosen to be
small in order to improve the search performance and to avoid
destruction of the schema. Connection weights of the BBNN
for pattern classification and robot control simulations are rep-
resented by six bits.

C. Optimization of the BBNN for Pattern Classification

Genetic algorithms perform optimization with the fitness
function. Maximizing fitness functions corresponds to mini-
mizing error between the desired output and the actual output

Fitness (4)

(5)

TABLE I
PARAMETER SETTINGS FOROPTIMIZING BBNN

(a)

(b)

Fig. 6. Trend of fitness values during evolution. (a) XOR (b) Four-bit
symmetry.

Equation (4) shows the fitness function used to optimize the
structure and weights of the BBNN.

number of training data;
number of actual output nodes;

312 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

(a) (b)

(c)

Fig. 7. Structure and weights of the BBNN optimized using the genetic algorithm. (a) XOR. (b) Four-bit symmetry. (c) 2-D encoding for the XOR problem.

and desired and actual outputs of theth output
block referred to th pattern;

and penalty terms for assuring evolution of valid
BBNN structures only.

Penalty term excludes invalid internal configuration of a
block having all input nodes or all output nodes only, which
means all the signal sof a block only coming in or going out.
The term prevents invalid structures in which all the outputs
of middle stage blocks are composed of only upward signal
flow . Normally, the penalty terms are set to .
When a structure chromosome contains at least one invalid
structure, the penalty terms are assigned to a low fitness of.

Fig. 6 shows the trend of fitness values in evolution for the
two pattern classification problems. The dotted line and the solid
lines denote the maximum and average fitness values, respec-
tively. In (4), the maximum fitness of a single output is the same
as the number of data (). Fitness trends show the evolution
procedure takes longer in the latter part of the evolution in order
to satisfy the end conditions of approaching 99.9% of the max-
imum fitness. After an evolution procedure achieving 99.9% of
max fitness, the error between the actual output and the desired
output is quite big, since the defined fitness function has a near
uniform distribution in the interval. Increasing the interval for
higher fitness values could solve this problem. The mean-square
errors by the BBNN classifiers after evolution procedure were
zero for the XOR and 0.062 for the four-bit symmetry problems.

The structure and weights of the BBNN optimized by the ge-
netic algorithm for different pattern classification problems are
shown below. The number of inputs, which is bigger than that
of outputs, determines the size of the BBNN. Two stages were
enough to classify the patterns in the two problems.

Fig. 7 shows the structure and weights of the optimized
BBNN for the given patterns after the evolution procedure.
The rightmost node was arbitrarily chosen as the output

Fig. 8. Decision boundary for the XOR classification problem.

node. All the redundant output nodes are marked as *. All
integer numbers denote optimized weights and biases. The
optimized BBNN structure differs from that of the multilayer
feedforward neural networks. The XOR pattern classifier based
on the BBNN having different structure from the multilayer
perceptron neural network with two input nodes, two middle
layer nodes, and one output node(2-2-1). The BBNN optimized
with the GA successfully classified the patterns with integer
weights. The number of possible BBNN structures depends
on the network size. BBNNs of size 2 2 can have up to
64 possible structures, 2 4 BBNN can have 4096 possible
structure combinations.

Fig. 8 shows the decision boundary for the XOR problem
generated by the BBNN trained with the genetic algorithm. The
decision boundary represents the nonlinear characteristics of the
XOR pattern classification problem.

Fig. 9 shows the evolution procedures of the structure op-
timization for the XOR problem. Fig. 9(a) represents the ini-

MOON AND KONG: BLOCK-BASED NEURAL NETWORKS 313

(a)

(b)

(c)

Fig. 9. Convergence of the optimal BBNN structure for the XOR problem. (a)
Initial structure distribution. (b) Structure distribution after eight generations.
(c) Convergence of the optimal BBNN structure.

tial distributions of all the possible combinations of the BBNN
structures. Initial BBNN structures are randomly selected, while
the BBNN with structure ID 37 was dominant. The number in
the x-axis denotes the decimal ID number decoded from a bit
string that represents a specific BBNN structure. Fig. 9(b) indi-

(a)

(b)

(c)

Fig. 10. Convergence of the optimal BBNN structure for the four-bit
symmetry problem. (a) Initial structure distribution. (b) Structure distribution
after 50 generations. (c) Convergence of the optimal BBNN structure.

cates a structure distribution after eight generations. Many
nonoptimal structures disappeared in natural selection. Fig. 9(c)
represents the trends of an optimal structure that survive in an
evolution procedure. The solid line denotes the number of op-
timized chromosomes in population, the dotted line shows the
sum of the number of the other structures. After optimization
procedure, GA finds the optimal structure (ID 51).

314 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Fig. 11. Simulated Khepera robot with the BBNN controller.

Fig. 10 shows the evolution procedure of the structure opti-
mization for the four-bit symmetry problem. Fig. 10(a) repre-
sents the initial distributions of all the possible BBNN struc-
tures, and Fig. 10(b) represents BBNN structure distribution
after 50 generations. In an initial state of evolution, the pop-
ulation involves diverse types of structures while the structure
ID 3100 was in the majority in early evolution process. As the
evolution procedure went on, most structures disappeared and
only a few structures survived in the evolution process after 50
generations. Finally, the BBNN converged to an optimal struc-
ture with structure ID 3999 after 884 generations. This structure
is expressed in Fig. 7(b). Fig. 10(c) represents the trends of an
optimal structure at every 50 generations that survive in an evo-
lution procedure as in Fig. 9(c).

D. Optimization of the BBNN for Mobile Robot Control

Autonomous mobile robots recognize objects and move
freely by means of their wheels based on their own decisions
from sensor input data taken from surroundings. A mobile
robot model Khepera [20] is used to test the control capability
of the BBNN. In the simulation, all the robot parameters such
as sensor locations and sensing range are the same as those
of real Khepera robots. Two backward sensors are not used
since only forward movement is assumed. Two forward sensors
are combined as a single forward sensor for simplicity. A
maximum sensing range is 32 [mm], and diameter of a robot is
assumed 48 [mm]. The path is assumed to be 128 [mm] wide
in order to guarantee the robots can sense wall accurately.

A BBNN of 1 5 size was used to control mobile robots for
navigation in a path. Fig. 11 shows the simulated Khepera robot
with the BBNN controller. The BBNN takes five inputs from
proximity sensors and produce coded output for motor control.
Five output signals are converted to two motor control signal
for the two wheel motors. The robots are assumed to move for-
ward in a constant speed. The motor output determines rotation
angles of the mobile robots. The coded output of the BBNN is
translated to actual motor control signal. In the simulation, the
robot can rotate by 0, 45 , and 90 .

The objective of mobile robot control problem is to achieve
navigation along a path with no collision. Genetic algorithm can

Fig. 12. Trend of fitness values for mobile robot control.

achieve object dependent optimization based on the fitness func-
tion. The fitness function is defined as

(6)

where denotes the number of collisions andindicates the
number of materials that robots must collect along the naviga-
tion path. and are the maximum values ofand .
In a training path, optimal BBNN is obtained by genetic proce-
dure and tested in other navigation path.

Fig. 12 shows trend of fitness values for the mobile robot
control problem. Theoretical maximum fitness value equals one
according to (6). After 100 generations, no collisions occur and
the number of materials found was 111. The maximum fitness
value was .

Fig. 13 shows the initial distribution of structures for the mo-
bile robot control problem. In all 32 possible choices of structure
settings, structure of ID 14 survived and becomes a dominant
structure after 87 generations.

Fig. 14 shows the final structure of ID 14 and weights of the
BBNN for mobile robot control. The obtained BBNN corre-
sponds to the one with the maximum fitness value by genetic
procedure. Outputs of the BBNN consists of 4-bit control codes

, , , and . The output expresses rotation angle of mobile
robot at each step.

Fig. 15 shows a navigation by best individual during whole
genetic procedure. For training of path navigation, 122 materials
are put uniformly over the path. Robots are required to collect
all the materials on the path in order to learn navigation path
correctly. The trained robot finds the optimal navigation path
with no collisions.

Fig. 16 shows trajectory of a robot with the BBNN controller
in a path not used in training procedure. A single stage BBNN
could control a mobile robot for path navigation without colli-
sion. The robot with the optimized BBNN controller having the
maximum fitness value shows no collisions to find the optimal
navigation path. Mondada [21] demonstrated a navigation and

MOON AND KONG: BLOCK-BASED NEURAL NETWORKS 315

(a) (b)

(c)

Fig. 13. Convergence of the optimal BBNN structure for the mobile robot control problem. (a) Initial structure distribution. (b) Structure distribution after 87
generations. (c) Convergence of the optimal BBNN structure.

(a)

(b)

Fig. 14. Final structure and weights of the BBNN for the mobile robot control problem. (a) Final structure and weight of BBNN. (b) 2-D encoding of the optimized
BBNN.

316 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

Fig. 15. Trajectory of a mobile robot with maximum fitness in training path.

Fig. 16. Trajectory of a mobile robot in test path.

obstacle avoidance experiment of the autonomous mobile
robot Khepera in an open space with an obstacle in the middle
using a single-layer feedforward neural network. The neural
network has self-feedback and allows lateral connection among
the output neurons. The single-stage BBNN in Fig. 14(a) was
enough to control the mobile robot navigation problems.

V. CONCLUSION

This paper presents a novel block-based neural network
model and its application to pattern classification and mobile
robot control problems. The BBNN consists of 2-D array of
basic blocks which are suitable for implementation using recon-
figurable hardware such as FPGAs. The structure and weights
of BBNN are optimized simultaneously by a genetic algorithm.
The genetic algorithm searches for global optimum of structure

and weights among a possible combinations of structure and
weights. The optimized BBNN can solve practical problems
as pattern classification and mobile robot control. The genetic
algorithm uses 2-D encoding, modified scaling, and the elitist
method. A normalized 2-D crossover operator and different
mutation probabilities in structure and weight bit strings are
applied in the optimization of the BBNN. In order to enhance
its performance, internal copy and inversion operators are
used. Input–output patterns with nonlinear decision boundaries
were used to evaluate pattern classification performance of the
BBNN. The proposed BBNN models, evolved with the genetic
algorithm, could solve pattern classification and mobile robot
control problems.

REFERENCES

[1] A. J. Montalvo, R. S. Gyurcsik, and J. J. Paulos, “Toward a general-pur-
pose analog VLSI neural network with on-chip learning,”IEEE Trans.
Neural Networks, vol. 8, pp. 413–423, Mar. 1997.

[2] L. Raffo, S. P. Sabatini, and G. M. Bisio, “Analog VLSI circuits as phys-
ical structures for perception in early visual tasks,”IEEE Trans. Neural
Networks, vol. 9, pp. 1483–1494, Nov. 1998.

[3] D. B. Fogel,Evolutionary Computation: The Fossil Record: IEEE Press,
1998.

[4] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:
Comments on the history and current state,”IEEE Trans. Evol. Comput.,
vol. 1, pp. 3–17, 1997.

[5] X. Yao and Y. Shi, “A preliminary study on designing artificial neural
networks using co-evolution,” inProc. IEEE Int. Conf. Intell. Contr. In-
strum., Singapore, 1995, pp. 149–154.

[6] M. Scholz, “A learning strategy for neural networks based on a modified
evolutionary strategy,” inProc. Parallel Problem Solving from Nature,
H.-P. Schwefel and R. Männer, Eds. Heidelberg, Germany: Springer-
Verlag, 1991, pp. 314–318.

[7] X. Yao, “A new evolutionary system for evolving artificial neural net-
works,” IEEE Trans. Neural Networks, vol. 8, pp. 694–713, May 1997.

[8] J. R. McDonnell and D. Waagen, “Evolving recurrent perceptrons for
time-series modeling,”IEEE Trans. Neural Networks, vol. 5, pp. 24–38,
1994.

[9] P. J. Angeline, G. M. Sauders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,”IEEE Trans. Neural
Networks, vol. 5, pp. 54–65, Jan. 1994.

[10] N. J. Radcliffe, “Genetic set recombination and its application to neural
network topology optimization,” Univ. Edinburgh, Edinburgh, U.K.,
Tech. Rep. EPCC-TR-91-21, 1991.

[11] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms,” inProc. 11th Joint Conf. Artificial Intell.
(IJCAI), 1989, pp. 762–767.

[12] P. G. Korning, “Training neural networks by means of genetic algorithms
working on very long chromosomes,”Int. J. Neural Syst., vol. 5, no. 3,
pp. 299–316, 1995.

[13] D. Whitley and T. Starkweather, “Optimizing small neural networks
using a distributed genetic algorithm,” inProc. Int. Joint Conf. Neural
Networks. Hillsdale, NJ: Lawrence Erlbaum, 1990, vol. 1, pp.
206–209.

[14] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,”Parallel
Comput., vol. 14, pp. 137–170, 1995.

[15] M. Vittorio, “Genetic evolution of the topology and weight distribution
of neural networks,”IEEE Trans. Neural Networks, vol. 5, pp. 39–53,
Jan. 1994.

[16] T. Kumagai, M. Wada, S. Mikami, and R. Hashimoto, “Structured
learning in recurrent neural network using genetic algorithm with
internal copy operator,” inProc. IEEE Int. Magn.Conf., 1997, pp.
651–656.

[17] Z. Michalewicz,Genetic Algorithms+ Data Structures= Evolution
Programs 3rd Rev. and Extended Ed.. New York: Springer-Verlag,
1998.

[18] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[19] T. N. Bui and B. R. Moon, “On multi-dimensional encoding/crossover,”
in Proc. 6th Int. Conf. Genetic Algorithms (ICGA), 1995, pp. 49–56.

MOON AND KONG: BLOCK-BASED NEURAL NETWORKS 317

[20] F. Mondada, E. Franzi, and P. Ienne, “Mobile robot miniaturization: A
tool for investigation in control algorithms,” inProc. 3rd Int. Symp. Ex-
perimental Robot., 1993, pp. 501–513.

[21] F. Mondada and D. Floreano, “Evolution and mobile autonomous
robotics,” in Toward Evolvable Hardware, E. Sanchez and M. Tom-
masini, Eds. New York: Springer-Verlag, 1996, pp. 221–249.

Sang-Woo Moonreceived the B.S. and the M.S. de-
grees in electrical engineering from the Soongsil Uni-
versity, Seoul, Korea, in 1998 and 2000, respectively.

His research interests include intelligent robot con-
trol, pattern recognition, real-time system, and evolu-
tionary computation.

Seong-Gon Kong(S’89–M’92) received the B.S.
and the M.S. degrees in electrical engineering from
Seoul National University, Seoul, Korea, in 1982
and 1987. In 1991, he received the Ph.D. degree
in electrical engineering from the University of
Southern California (USC), Los Angeles.

Dr. Kong is an Associate Professor of electrical
engineering at Soongsil University, Seoul, Korea,
and was Department Chair from August 1999 to
July 2000. Since August 2000 he has been with the
School of Electrical and Computer Engineering at

Purdue University, West Lafayette, IN, as a Visiting Scholar. His research
interests include intelligent signal processing, artificial neural networks, fuzzy
systems, pattern recognition, and evolutionary robotics.

