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Block-Based Neural Networks

Sang-Woo Moon and Seong-Gon Koridember, IEEE

Abstract—This paper presents a novel block-based neural  Another problem is hardware implementation of artificial
network (BBNN) model and the optimization of its structure and  neural networks. Due to nonlinear activation functions and
weights based on a genetic algorithm. The architecture of the o) yalyed connection weights of artificial neural networks,
BBNN consists of a two-dimensional (2-D) array of fundamental their impl tation b d digital hard . t
blocks with four variable input/output nodes and connection éirimplementation based on digital hardware 1S not an easy
weights. Each block can have one of four different internal task. Hardware realization of artificial neural networks has
configurations depending on the structure settings. The BBNN attempted mainly with analog devices [1], [2]. For neural
model includes some restrictions such as two-dimensional array network hardware containing analog components, dynamic
and integer weights in order to allow easier implementation yqconstryuction and on-line parameter update is a difficult task.
with reconfigurable hardware such as field programmable logic luti lgorith h hani f
arrays (FPGAs). The structure and weights of the BBNN are  Evolutionary algorithms [3], [4], based on the mechanics o
encoded with bit strings which correspond to the configuration Natural selection and natural genetics, provide us with a solution
bits of FPGAs. The configuration bits are optimized globally to the structure and weight optimization problems. The evolu-
using a genetic algorithm with 2-D encoding and modified genetic tjonary computation uses a problem-dependent fitness function
operators. Simulations show that the optimized BBNN can solve , qo a1 for the global optimum. Previous works in the field of
engineering problems such as pattern classification and mobile L L - .
robot control. neural-network optimization with the evolutionary algorithms

include a method of finding optimal network structure by using
evolutionary computation dynamically while still using tradi-
tional gradient-based learning method [5]. Also, weight opti-
mization in fixed structure has been proposed to avoid local
. INTRODUCTION minimum problems [6]. Both structure and weights are opti-

RTIFICIAL neural networks have been successfullif“ized by evolutionary computation simultaneously [7]-[9]. The
A applied to diverse engineering problems due to thefempeting conventions problem or the permutations problem
model-free approximation capability to complex decisiof@" occur when genetic algorithm is used for weight optimiza-
making processes. Despite the success and the promisdiQst of feedforward multilayer neural networks [10]. To over-
artificial neural networks in solving practical problems, theif®me such problems, Montana and Davis [11] use intelligent
design procedure still requires a trial-and-error. Obtainirfggossover and real encoding for connection weights. Korning
the optimal structure of artificial neural networks for a givel2] optimizes neural-network connection by using binary en-
problem is one of typical problems in neural network desigfding scheme and fitness function with entropy concepts. Ge-
Popular multilayer perceptron (MLP) neural networks traing@tic algorithm has been successfully applied to neural network
using the backpropagation learning algorithm, for eXamp|gpt|m|zat|on.Wh|tIey [13], [14] determines the neural-network
provide a practical approach to pattern classification tasRgucture by the GA with conventional gradient descent learning
because of their postlearning processing speed and to trdgorithm. Vittorio [15] represents structure and weights by bi-
wide range of applications, but the problem of determining igry encoding, and determines network size by granularity. Ku-
structure has no general solution. Design of artificial neurBlagai [16] optimizes neural network with recurrent neurons by
networks requires identification of network configuration ané® GA with internal copy operator.
associated parameters. Gradient-descent learning algorithm&! this paper, a novel block-based neural network (BBNN)
that modify connection weights based on a error function grglodel is proposed in order to achieve simultaneous optimization
dient have difficulties in determining optimal network topology?f network structure and connection weights. The BBNN con-
such as the number of nodes and connection configuratiofi§ts of & two-dimensional (2-D) array of basic neural-network
Training a neural network typically requires a human operatBlocks with integer weights for easier implementation using re-
to make many training runs with different choices of structurgenfigurable hardware such as field programmable logic arrays
and parameter settings. For practical purposes, neural-netwdik GAs). The structure and internal parameters of an individual
structure and connection weights should be optimized at tRENN are represented by fixed-length binary codes, which cor-
same time. respond to network configuration bit strings of FPGAs to deter-

mine internal structures. The structure and weights of the BBNN
are encoded as a 2-D chromosome for easier partial on-line re-
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Fig. 2. Four different internal configuration types of a basic block. (a) 1/3. (b)
3/1. () 2/2. (d) 2/2.

Fig. 1. Structure of the block-based neural network (BBNN). . . . .
Fig. 2 shows four different internal structures. The signal

flow between the blocks determines the I/O mode and thus
tions show that the BBNN with structures and WelghtS Obtainﬂq*:erna| structure of the basic block. F|g Z(a) and F|g Z(b)
by the genetic algorithm successfully solve pattern classificdenote one input/three outputs and three inputs/one output

tion and autonomous mobile robot control problems. cases, respectively. Fig. 2(c) and Fig. 2(d) correspond to two
inputs/two outputs but with different internal connections.
Il. BLOCK-BASED NEURAL NETWORK MODEL z; andy; indicate the input and output of the block. All the

weights and biases have integer values for the purposes of easy
] ) hardware implementation. BBNNs have problem-dependent
~The BBNN model consists of a 2-D array of basic blocksyctures with both feedforward and feedback characteristics.
Fig. 1 represents the structure of the BBNN modetof n  gagic blocks have three possible 1/0 modes or three different
size. Each block is labeled d@%;. The first staged = 1) and  jnternal structures: 1/3 (one input and three outputs), 2/2 (two
the last stagei(= i) denote the input and the output stagegynyts and two outputs), or 3/1 (three inputs and one output).

respectively. The BBNN can have more than two middle stag&e extreme case of all nodes becoming inputs (4/0) or outputs
Them x n BBNN can have up ta inputs and outputs. Re- (0/4) is not allowed.

dundant inputs take a constant value and redundant outputs aig;-h node is characterized by an activation funcgén

“don’t care.” Any block in the middle stages is connected diy ot nodes use a linear activation function, while the output
rectly with its neighboring blocks. The leftmost and rightmos{gqes use symmetric saturated linear activation functions for
blocks are connected with each other. The incoming arrow {aqware implementation. The output node can have bias
a block denotes an input to the block, the outgoing arrow iRsims with a constant (=1) input. Fig. 3 shows the shape of the

dicates output. Output of nodes become inputs for their neigl;ymetric saturating linear activation function with a gradient
boring blocks. For example, the output of bloBk, becomes ot 1/ For a more continuous output space with restricted

an input for blockBz. The output of blocks at the same level5ining patterns, the slope of the activation function will be

are calculated concurrently in order for system output to reﬂe&t\anged.

current input. The BBNN can be implemented using reconfig- the pgNNs are designed for implementation using digital

urable hardware by arranging the schematic design of each bgsifyware such as FPGA and other reconfigurable chips that

block. i . allow on-line partial reorganization. BBNNs have modular char-
The structure of the BBNN defines signal flow representeghieristics. The size can be expanded by adding more basic

by the arrows between the blocks. This type of structure alloy,cks. Network structure simply corresponds to determining

signal flow in both forward and backward directions. Signaligng flows. Connection weights are learned by the GA-based
flow determines automatically internal configuration or INPUtyhtimization procedure.

output connections of basic blocks. Each block corresponds to

a simple fgedforward neurgl network having four nodes wh|%1. Characteristics of the BBNN

are reconfigurable depending on network structure. The block

has four different types of internal configurations depending onLet M LP(n, m — 1) denote an MLP network with a
the input-output connections of the network structure. The difiaximum number of neuronsin each layer and a maximum
ferent internal connections of the block allow far powerful gemumber of middle layersn — 1. And let wgf”’)denote the
eralization capabilities. connection weight between thiéh input neuron and théth

A. Architecture of the Block-Based Neural Network
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Fig. 3. Symmetric saturated linear activation function of the BBNN. The BBNN of sizem x n can represent successfully the

input—output characteristics of any MLP network for< 5.
output neuron in thetth basic blockBy, in the kth stage. For example, both a 3-3-1 MLP and ax23 BBNN can clas-
A<kE<m,1<r<n). sify three-bit odd parity patterns successfully. Since the BBNN

Theorem 1:Let N, be the maximum number of weights ofcan represent both feedforward and feedback connection char-
the BBNN of sizem x n. Let IV,,, be the maximum number of acteristics, the BBNN can have an optimal structure for a given
weights of the MLP networR{ L P(n, m—1). ThenN, > N,, problem by learning through evolutionary algorithms.
forl <n <5.

Proof: A basic block of the BBNN can have a maximum I1l. GENETIC ALGORITHM FOR EvoLVING BBNN
number of weights, which is six including the bias, when all the L .
blocks are configured with the mode 2/2. The maximum numberOpt'm'Z"’ltlon of the BBNN IS composed of twp t_ask_s: struc-
of weights of them x n BBNN is N, = 6mn. The maximum ture and parameter o.ptlmlzauons..Structure optimization corre-
number of weights of a fully connected MLP network with ponds to the determ}nguop ofthemte_rnal'conflguratlon of each
maximum number of neuronsin each layer and the maximum lock. Parameter optimization or learning is the process that de-

- termines the connection weight values for given input-output
number of middle layers: — 1 equalsy,,, = 1). . i _ .
y d = mn(n+1) data. The search space is not continuous since BBNNs have in-
N,, — Ny =mn(n +1) — 6mn teger value of vye?ghts. Ina discrgte search space gnd for a small
m(n® — 5n) amounts of training data, learning through evolutionary algo-
= — on).

rithms is better than through gradient-based search algorithms.

Form > 0andl < n < 5, n% — 5n < 0. ThereforeN,,, < Gene_t|c algorithm finds the optlmgl solu_tlon in sear_ch space

N, 0 consisted of chromosomes according to fitness function, which
i represent a set of possible settings of structure and weights of

Theorem 2: Any connection weight of an MLP network is
y 9 fhe BBNN.

represented by a combination of more than one weight of t
BBNN, if all the basic blocks are of mode 2/2. )
Proof: Any connection weight betweesth neuron akth A Encoding

layer and;th neuron atk+ 1)th layer in the MLP MLRn, m — The structure of the BBNN determines the signal flow be-
1) is represented by a sét,, of weights ofkth stage blocks tween the blocks, and the signal flow between the blocks de-
wfj’”) (1<p<n,1<qg<n, 1<k<m,1<7r<n) termines in turn the internal configuration or the input/output
mode of each block. In order to optimize structure and param-
( {wé’{ q)7 wg’; q—1)7 . wé’;p_l), eters simultaneously, network structure and connection weights
should be encoded in one chromosome at the same time. In con-
w%p)} ifp>gq ventional multidimensional encoding, each gene is assigned to
one dimension. In this paper, the network structure and weights
Cpy = {w§§,1)7 o we T k) ) _ of each block are assigned to a two-dimensional chromosome
in order to improve the performance of the crossover operation.
wih et wg’;")} ifp<g Fig. 4(a) represents a basic block chromosome a of the
BBNN. Fig. 4(b) shows the result of two-dimensional encoding
| {wéép)} if p=¢q of the BBNN, whose component is a block encoded as in

Fig. 4(a). All the weights are encoded by four-bit binary
O numberso denotes connection weights, amghows structure.
Theorem 3: A BBNN of m x n represents the equivalentStructure of BBNN is defined by signal flows. The value “0”
structure of the MLP networR/ LP(n, m — 1). indicates downward( and leftward{) signal flows , while
Proof: Accordingto Theorem 2, am x n BBNN canrep- “1” denotes upward() and rightward{) directions, respec-
resent all the weights of the MLP network MW, m — 1). tively. Signal flows are common for neighboring blocks, and
Therefore then x n BBNN can represent the equivalent structherefore adjacent blocks share the same signal flow arrows.
ture of the MLRn, m — 1). O The first stage of the BBNN has input nodes which corresponds
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to all “0” signal flows, while the last stage also contains all parent offspring
“0” for output signal flow. The connection weight has value
from —(2=1 — 1) to (2=1 — 1) with two zeros which means
the weight is disconnected. Equation (1) transforms positive
integerw, expressed by-bit binary number into integer value
w from —(2'=1 — 1) to (21 — 1)

w=w, — 21 4 s(wy) Q)

where

Fig. 5. Generalized 2-D crossover operation.

@)

s(ws) {1 if wy, < 201
b) — .
0 otherwise

ngss when negative fitness values occur. The modified linear fit-

other generally known neural-network models. The BBNNs aPEss scaling method uses two different linear functions based on

designed for digital hardware implementation as FPGA that é]lax]:!;r\um, m||n|mum,c<ja\nd a\itgra:jgitﬁtness values to avoid nega-
lows on-line partial reorganization. This means that reconfigye Itness vajues and genetic dritt.
uration bit strings must be generated without the help of mi- {alfi +by i fain < fs@ndfi < faug

Block-based neural networks have restrictions comparing

croprocessors. Binary encoding of the BBNN is advantageous h(f;) = (3
for digital hardware implementation and dynamic reconfigura-

tion. In order to convert the structure and weights to reconfigu- equation (3) shows the linear scaling functions for

ration bit strings by means of digital logic circuits, the BBNNogch casef; is the fitness ofith chromosome andi(f;)
parameters should be represented by bit strings. A genetic algo-the scaled fitness ofith chromosome. fumim Favgs
rithm based on binary encoding has inherent shortcomings[1¥]. ~~ are the minimum, average, and maximum fit-
To overcome these problems, a modified encoding schemes agds by object function, respectively. The parameters in
genetic operations are used. scaling functions aren, = fovg/(fovg — fmin)s G2 =

(Oé - 1)fa'vg/(fmax - fa'vg)a bl = _fmin fa'vg/(fa'vg - fmin)y

and by = fog(fmax — @favg)/(Fmax = faug):

A stochastic selection by the roulette wheel method is a bagic= («fouy — fimax )/ (e — 1) is & criterion forh( f min ) < 0
reproduction mechanism used frequently in the genetic algo-the linear fithness scaling procedure.is a linear scaling
rithm. The roulette wheel selection method is based on the fitenstant and effects the slope of linear scaling function. In
ness ratio, which has some weaknesses. In early stage of evgknreral, for a small number of chromosomes, the slope takes
tion, a chromosome with a larger fitness value than other chihe rangel.2 < « < 2. This fithess scaling helps the evolution
mosomes has a high survival probability in the reproductietheme maintain evolution trend and diversity of individuals
process, which might cause premature convergence. Also, wiaery,.., gets close tof .. Together with the modified linear
individuals converge to near solution, an average fitness midiihess scaling, elitist selection is used.
be close to the population’s best fitness. If this is the situation, Genetic operators are modified in accordance with 2-D
the solution candidates with average and best fitness will hamecoding. A chromosome composed of multidimensional en-
nearly the same number of copies in future generations. Thewding considers three types of crossover operations, extended
competition between individuals by genetic operators beconfesm one-dimensional (1-D) encoding. First, one can select
low, and so individuals wander around the solution. a crossover point for each dimension. Next, selection of the

To overcome this problem, one can reduce the relatively highulticrossover point for each dimension is done, which is an
fitness values of the individual chromosomes, and the fithesstension of the first method. Finally, one can fix the total
difference between the chromosomes can be scaled by the dismber of crossover poinfs.;_; k; = k(k; > 0). The final
tribution of the individual state of all fithess. The fithess scalinghethod is a generalized form, which allows a more diverse
and ranking methods is one of the solutions for this problesthema than the crossover operations with fixed crossover
[18]. The fitness ranking method ranks the chromosomes pwints.
fitness values and then redistributes fithess exponentially acFig. 5 shows an example of a generalized multidimensional
cording to rank. The fithess ranking method does not considepssover operation witk; = 1 andk, = 2 [19]. In the
the relation between object function and fitness. The linear fitase of a 2-D generalized crossover for 2-D encoding, having
ness scaling method scales all fithess using maximum, mmne crossover point results in maintaining a variety of chromo-
imum, and average fitness by a linear function. somes and having two crossover points improves convergence.

The linear fitness scaling considers the state of all fitned3ifferent mutation probabilities are applied to the structure and
but if the average fitness is close to the maximum fitness, a fitkeight optimizations bit in binary representatign,, denotes
ness less than the average fitness can be evaluated as a negatveutation probability of the structure, apg,, also repre-
value. To prevent evaluation as a negative fithess in the linear ients the mutation probability for the weights.
ness scaling procedure, a modified scaling procedure transform$he transmission of data between the blocks has feedfor-
the maximum and average fitness to average and minimum fitard and feedback characteristics. The internal copy operator

asf; +bs otherwise

B. Genetic Operators
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which played an important role in improving the evolution per-
formance of neural network included a feedback characteristics

311

[16]. In this paper, the internal copy operator enables a sufficient

variety of all chromosomes after crossover. In 2-D encoding, a
chromosome selected by internal copy probabjitycopies a

part of the chromosome to other parts. The size and location of

the copy are randomly determined. For better performance, the

inversion operator searches for a solution by the information of
a chromosome selected by inversion probabjity Structural

genes do not use inversion operators.

IV. OPTIMIZATION OF BBNN

TABLE |

PARAMETER SETTINGS FOROPTIMIZING BBNN
Parameter Value

Fitness scaling factor (& ) 1.6
Crossover probability ( Pe) 0.35
Mutation for weight ( 2 ) 0.001
Mutation for structure ( Poms ) 0.005
Internal copy ( Pic ) 0.002
Inversion ( Py ) 0.002
population 100

A. Problem Definition

In order to verify the capability of the BBNN for solving 4
practical engineering problems, pattern classification tasks a
a mobile robot control problem were considered. First, th

exclusive-OR (XOR) and the four-bit symmetry problems ar .|

used for showing the performance of pattern classificatiol

The XOR problem contains two inputs and one output. | 34¢

both inputs have the same values, the output equdlsThe

S vaiue

output is one, if the inputs differ from each other. For the g 2r

four-bit symmetry problem, the output is set to one if two mos
significant bit§x;, z2) and two least significant bifss, x4)
are symmetric; and-1, otherwise. Inputs of the BBNN are
normalized to have values betweerl and 1, and the output .
has values from-1 to 1 since the symmetric saturating lineai
activation function is used. For mobile robot control problem 24
the BBNN takes five inputs from sensors for successful nav

38+

fitnes
w

281

-- - maximum fitness b
- average fitness

gation in a path.

B. Genetic Algorithm Parameters

The genetic algorithm for the optimization of the BBNN 16
requires seven parameters: fitness scaling fastocrossover

probability p., mutation probability for weighp,,,.,, mutation 155+

probability for structurep,,s, internal copy probabilityp;.,

inversion probabilityp;,, and population. All the parameters 15}

in the pattern classification and robot control problems a
selected as the one not having premature convergence
reaches the fastest in 20 repeated trials.

Table | shows all the parameters used in genetic evolution 1
optimizing the BBNN. Parametefs,. andp;, are chosen to be

—
=~
o

fitness value

small in order to improve the search performance and to avc 135}

destruction of the schema. Connection weights of the BBN
for pattern classification and robot control simulations are re 13
resented by six bits.

125
C. Optimization of the BBNN for Pattern Classification

Genetic algorithms perform optimization with the fitness
function. Maximizing fitness functions corresponds to mini-
mizing error between the desired output and the actual outpyy;

s
T

20

40 60 80 100 120 140 160
generation

(@)

- - maximum fitness
- average fitness

100

200 300 400 500 600 700 800
generation

(b)

Eig. 6. Trend of fitness values during evolution. (a) XOR (b) Four-bit
mmetry.

_ N 7o ) Equation (4) shows the fitness function used to optimize the
Fitness=pips> | Nn, — Z Z ik (4)  structure and weights of the BBNN.
J=1 k=1 N number of training data;

e = djx — yin(x)- () No

number of actual output nodes;
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Fig. 7. Structure and weights of the BBNN optimized using the genetic algorithm. (a) XOR. (b) Four-bit symmetry. (c) 2-D encoding for the XOR problem.

d;; andy,;;  desired and actual outputs of théh output !
block referred tgjth pattern; agf
p1 andps penalty terms for assuring evolution of valid 08
BBNN structures only. a7k
Penalty termp; excludes invalid internal configuration of a a6t C
block having all input nodes or all output nodes only, which o5l 1

means all the signal sof a block only coming in or going out.
The termps prevents invalid structures in which all the outputs 04
of middle stage blocks are composed of only upward signal g3
flow 7. Normally, the penalty terms are setgp= 1, p» = 1.
When a structure chromosome contains at least one invalid
structure, the penalty terms are assigned to a low fithe8$of
Fig. 6 shows the trend of fitness values in evolution for the o)
two pattern classification problems. The dotted line and the solid
lines denote the maximum and average fitness values, respeg-8. Decision boundary for the XOR classification problem.
tively. In (4), the maximum fitness of a single output is the same
as the number of dataV). Fitness trends show the evolutiomode. All the redundant output nodes are marked as *. All
procedure takes longer in the latter part of the evolution in ordigteger numbers denote optimized weights and biases. The
to satisfy the end conditions of approaching 99.9% of the magptimized BBNN structure differs from that of the multilayer
imum fitness. After an evolution procedure achieving 99.9% é&edforward neural networks. The XOR pattern classifier based
max fitness, the error between the actual output and the desisedthe BBNN having different structure from the multilayer
output is quite big, since the defined fitness function has a ng&frceptron neural network with two input nodes, two middle
uniform distribution in the interval. Increasing the interval fotayer nodes, and one output node(2-2-1). The BBNN optimized
higher fitness values could solve this problem. The mean-squaiéh the GA successfully classified the patterns with integer
errors by the BBNN classifiers after evolution procedure wekgeights. The number of possible BBNN structures depends
zero for the XOR and 0.062 for the four-bit symmetry problemsn the network size. BBNNs of size 2 2 can have up to
The structure and weights of the BBNN optimized by the g&4 possible structures, 2 4 BBNN can have 4096 possible
netic algorithm for different pattern classification problems arstructure combinations.
shown below. The number of inputs, which is bigger than that Fig. 8 shows the decision boundary for the XOR problem
of outputs, determines the size of the BBNN. Two stages wegenerated by the BBNN trained with the genetic algorithm. The
enough to classify the patterns in the two problems. decision boundary represents the nonlinear characteristics of the
Fig. 7 shows the structure and weights of the optimizedOR pattern classification problem.
BBNN for the given patterns after the evolution procedure. Fig. 9 shows the evolution procedures of the structure op-
The rightmost node was arbitrarily chosen as the outptinization for the XOR problem. Fig. 9(a) represents the ini-
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Fig. 10. Convergence of the optimal BBNN structure for the four-bit
(c) symmetry problem. (a) Initial structure distribution. (b) Structure distribution

r nerations. nvergen f th imal BBNN str re.
Fig. 9. Convergence of the optimal BBNN structure for the XOR problem. (e%fte 50 generations. (c) Convergence of the optima structure

Initial structure distribution. (b) Structure distribution after eight generations.
(c) Convergence of the optimal BBNN structure. cates a structure distribution after eight generations. Many
nonoptimal structures disappeared in natural selection. Fig. 9(c)
tial distributions of all the possible combinations of the BBNNepresents the trends of an optimal structure that survive in an
structures. Initial BBNN structures are randomly selected, whiévolution procedure. The solid line denotes the number of op-
the BBNN with structure ID 37 was dominant. The number itimized chromosomes in population, the dotted line shows the
the x-axis denotes the decimal ID number decoded from a bitm of the number of the other structures. After optimization
string that represents a specific BBNN structure. Fig. 9(b) indirocedure, GA finds the optimal structure (ID 51).
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Fig. 10 shows the evolution procedure of the structure optiig. 12. Trend of fitness values for mobile robot control.
mization for the four-bit symmetry problem. Fig. 10(a) repre-
tsuerr;f t,:r? d'n;ti'al fgs(tg')blrj:c’rr;::ng”;gel\llgossjféfufelaggrfgmféchieve object dependent optimization based on the fitness func-

’ 9. - present . dn. The fitness function is defined as

after 50 generations. In an initial state of evolution, the pop-
ulation involves diverse types of structures while the structure
ID 3100 was in the majority in early evolution process. As the c r
evolution procedure went on, most structures disappeared and fle, s) = <1 T ) <1 5 ) (6)
only a few structures survived in the evolution process after 50 e e
generations. Finally, the BBNN converged to an optimal strugrherec denotes the number of collisions andndicates the
ture with structure ID 3999 after 884 generations. This structui@mber of materials that robots must collect along the naviga-
is expressed in Fig. 7(b). Fig. 10(c) represents the trends oft@sh path.c ., andr ,.x are the maximum values efandr.
optimal structure at every 50 generations that survive in an eVg-a training path, optimal BBNN is obtained by genetic proce-

lution procedure as in Fig. 9(c). dure and tested in other navigation path.
Fig. 12 shows trend of fitness values for the mobile robot
D. Optimization of the BBNN for Mobile Robot Control control problem. Theoretical maximum fitness value equals one

according to (6). After 100 generations, no collisions occur and

Autonomous mobile robots recognize objects and moviee number of materials found was 111. The maximum fitness
freely by means of their wheels based on their own decisionslue wasf(c, s) = 0.909 836.
from sensor input data taken from surroundings. A mobile Fig. 13 shows the initial distribution of structures for the mo-
robot model Khepera [20] is used to test the control capabilijle robot control problem. In all 32 possible choices of structure
of the BBNN. In the simulation, all the robot parameters suddettings, structure of ID 14 survived and becomes a dominant
as sensor locations and sensing range are the same as thBw8eture after 87 generations.
of real Khepera robots. Two backward sensors are not usedrig. 14 shows the final structure of ID 14 and weights of the
since only forward movement is assumed. Two forward sens@BNN for mobile robot control. The obtained BBNN corre-
are combined as a single forward sensor for simplicity. 4ponds to the one with the maximum fitness value by genetic
maximum sensing range is 32 [mm], and diameter of a robotggocedure. Outputs of the BBNN consists of 4-bit control codes
assumed 48 [mm]. The path is assumed to be 128 [mm] wigg, 4,, 5, andy,. The output expresses rotation angle of mobile
in order to guarantee the robots can sense wall accurately. robot at each step.

A BBNN of 1 x 5 size was used to control mobile robots for Fig. 15 shows a navigation by best individual during whole
navigation in a path. Fig. 11 shows the simulated Khepera rolg@netic procedure. For training of path navigation, 122 materials
with the BBNN controller. The BBNN takes five inputs fromare put uniformly over the path. Robots are required to collect
proximity sensors and produce coded output for motor contrall the materials on the path in order to learn navigation path
Five output signals are converted to two motor control signabrrectly. The trained robot finds the optimal navigation path
for the two wheel motors. The robots are assumed to move forith no collisions.
ward in a constant speed. The motor output determines rotatiorFig. 16 shows trajectory of a robot with the BBNN controller
angles of the mobile robots. The coded output of the BBNN is a path not used in training procedure. A single stage BBNN
translated to actual motor control signal. In the simulation, thguld control a mobile robot for path navigation without colli-
robot can rotate by9Q +45°, and+90°. sion. The robot with the optimized BBNN controller having the

The objective of mobile robot control problem is to achievenaximum fitness value shows no collisions to find the optimal
navigation along a path with no collision. Genetic algorithm camavigation path. Mondada [21] demonstrated a navigation and
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Fig. 15.

e
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Fig. 16.

Trajectory of a mobile robot in test path.

obstacle avoidance experiment of the autonomous mobilé3!
robot Khepera in an open space with an obstacle in the middle
using a single-layer feedforward neural network. The neural
network has self-feedback and allows lateral connection amon[@]4
the output neurons. The single-stage BBNN in Fig. 14(a) was

enough to control the mobile robot navigation problems.

V. CONCLUSION

This paper presents a novel block-based neural network

Trajectory of a mobile robot with maximum fitness in training path.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001

and weights among a possible combinations of structure and
weights. The optimized BBNN can solve practical problems
as pattern classification and mobile robot control. The genetic
algorithm uses 2-D encoding, modified scaling, and the elitist
method. A normalized 2-D crossover operator and different
mutation probabilities in structure and weight bit strings are
applied in the optimization of the BBNN. In order to enhance
its performance, internal copy and inversion operators are
used. Input—output patterns with nonlinear decision boundaries
were used to evaluate pattern classification performance of the
BBNN. The proposed BBNN models, evolved with the genetic
algorithm, could solve pattern classification and mobile robot
control problems.
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