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ABSTRACT 
 
This paper presents hyperspectral fluorescence imaging and a support vector machine for detecting skin tumors. Skin 
cancers may not be visually obvious since the visual signature appears as shape distortion rather than discoloration. As a 
definitive test for cancer diagnosis, skin biopsy requires both trained professionals and significant waiting time. 
Hyperspectral fluorescence imaging offers an instant, non-invasive diagnostic procedure based on the analysis of the 
spectral signatures of skin tissue. A hyperspectral image contains spatial information measured at a sequence of 
individual wavelength across a sufficiently broad spectral band at high-resolution spectrum. Fluorescence is a 
phenomenon where light is absorbed at a given wavelength and then is normally followed by the emission of light at a 
longer wavelength. Fluorescence generated by the skin tissue is collected and analyzed to determine whether cancer 
exists. Oak Ridge National Laboratory developed an endoscopic hyperspectral imaging system capable of fluorescence 
imaging for skin cancer detection. This hyperspectral imaging system captures hyperspectral images of 21 spectral bands 
of wavelength ranging from 440 nm to 640 nm. Each band image is spatially co-registered to eliminate the spectral 
offset caused during the image capture procedure. Image smoothing by means of a local spatial filter with Gaussian 
kernel increases the classification accuracy and reduces false positives. Experiments show that the SVM classification 
with spatial filtering achieves high skin tumor detection accuracies. 
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1. INTRODUCTION 
 
Skin cancer is one of the most common cancers in the United States with over 59,350 cases diagnosed in 20041. Early 
diagnosis and thorough treatment are the keys to gaining a favorable prognosis. Cancer causes the cells grow out of 
control to form tumors. Current skin cancer diagnostic methods often rely on skin biopsy that involves the removal of 
tissue samples from the body for examination. Despite being a definitive test of skin cancer, the biopsy is an invasive 
and subjective diagnostic technique that requires both trained professionals and significant waiting time. A significant 
number of false positives may undergo biopsy or many malignant lesions can be overlooked. Developing non-invasive 
and objective techniques will be highly desirable in medical diagnostics.  
 
Optical imaging has been used extensively in the desire to develop a non-invasive diagnostic procedure2. Hyperspectral 
imaging sensor collects the electromagnetic spectrum at dozens or hundreds of wavelength ranges in the spectra and 
produce high-dimensional spectral signature data. Hyperspectral image data contains spatial information measured at a 
sequence of individual wavelength across a sufficiently broad spectral band. High-dimensional spectral signatures 
provide a detailed discrimination of the scene and therefore increase classification accuracies. The spectral signatures are 
useful for identifying various tissue compositions due to their unique spectral characteristics at different wavelengths3,4. 
In clinical diagnostics, hyperspectral imaging provides an effective method for early detection as well as monitoring of 
the effectiveness of therapy for retinal disease5. Hyperspectral imaging has been of critical importance to help the food 
processing industry inspect wholesomeness in meat products6.  
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This paper presents endoscopic imaging of hyperspectral fluorescence images and a spectral signature analysis method 
for use in skin tumor diagnostics. Hyperspectral fluorescence imaging offers an instant, non-invasive inspection method 
for detecting biomedical abnormalities such as skin tumors7. Fluorescence is a phenomenon where light is absorbed at a 
given wavelength and then is normally followed by the emission of light at a longer wavelength. Fluorescence 
techniques are generally regarded as sensitive optical tools and have proven to be useful in a number of scientific areas8. 
There are a number of compounds that emit fluorescence in the visible range when excited with ultraviolet radiation. The 
altered biochemical and morphological state of the neoplastic tissue is reflected in the spectral characteristics of the 
measured fluorescence. Figure 1 shows the proposed procedure of hyperspectral image analysis for skin tumor detection. 
Hyperspectral images captured by the imaging system are not perfectly aligned since the acousto-optic tunable filter 
(AOTF) diffract light on each different wavelength and causes the translation between every spectral image. Image 
registration process finds a geometric transformation to spatially align the images. Mutual information is used to find the 
offsets between the spectral band images. A Gaussian filter finds local averaging of spectral signatures to reduce the 
noise effect. A support vector machine (SVM) pattern classifier is developed to detect skin tumor from the hyperspectral 
fluorescence image. Classification results show that the spectral signature analysis method efficiently detects skin tumors 
from hyperspectral fluorescence images. 
 
 

 
Figure 1: Procedure of hyperspectral image analysis for mouse tumor detection 

2. HYPERSPECTRAL FLUORESCENCE IMAGE ACQUISITION 

2.1 Imaging system 
Oak Ridge National Laboratory has developed a hyperspectral imaging system capable of fluorescence imaging for skin 
tumor detection. Figure 2 shows hardware components of the imaging system: an imaging fiber probe system for signal 
collection, an endoscope, an acousto-optic tunable filter for wavelength selection, a laser excitation source, an 
endoscopic illuminator, a CCD color camera for reflection detection, and an intensified charge-coupled device (ICCD) 
for fluorescence detection. Reflection images were acquired using an endoscopic illuminator (Olympus Model CLV-10) 
equipped with a 300-watt CW Xe arc lamp source. The reflection source was coupled to a gastrointestinal endoscope 
(Olympus Type T120) equipped with an imaging bundle. Fluorescence spectra and images were acquired using a LSI 
pulsed Nitrogen laser (Model VSL-337) with a maximum repetition rate of 20 Hertz. For fluorescence imaging, the N2-
pumped laser was coupled to a bifurcated fiber probe (R400-7-VIS/NIR) that was also used to sample point 
measurements using a miniature fiber optic spectrometer (Ocean Optics USB2000-FLG). 
 
Data produced by hyperspectral imaging systems are essentially a three dimensional cube of data ( , , )iI x y λ , x = 0, 1, …, 
M-1, y = 0, 1, …, N-1. The x and y denote the spatial coordinates a pixel location in the image and iλ  (i=1,2,…,L) 
denotes a spectral band (wavelength range). The value stored at ( , , )iI x y λ is the response from the pixel (x, y) at a 
wavelength corresponding to the wavelength iλ .  
 

2.2 Hyperspectral fluorescence image acquisition  
Both fluorescence and scattered light were collected through the endoscope into the AOTF device via collimating lenses. 
The AOTF has a dynamic range of 400-650 nm with a 10×10 mm aperture and a spectral resolution of 1-2 nm. The 
fluorescent light emitted by the tissues is diffracted by the AOTF (Brimrose TEAF10-0.4-0.65-S) at a 60-degree angle 
from the undiffracted (zero-order) beam thus separating the reflected image from the fluorescent image. A mirror placed 
in front of the AOTF projected the acquired images onto the ICCD (Model IMAX-512-T-18 Gen. II) camera for 
fluorescence imaging and onto the CCD camera (Sony Model CCD-Iris) for reflection imaging. Individual wavelengths 
can be diffracted by the AOTF and thus sent to the ICCD. A Brimrose AOTF controller (Model VFI-160-80-DDS-A-



C2) controls the AOTF. The controller sends an RF signal to the AOTF based on the input provided by the researcher 
using the Brimrose software. Wavelength selection takes place in microseconds enabling ultra-fast modulation of 
wavelength output to the ICCD. Wavelength specific images were taken between 440-650 nm every ten nanometers. In 
addition to the imaging capability, spectral information from each site was obtained using the Ocean Optics spectrometer 
coupled to a laptop computer.  
 
A timing generator incorporated into the ICCD camera controller (ST-133) allowed the ICCD to operate in the pulsed 
mode with a wide range of programmable functions. Fluorescence images were acquired by gating the intensified ICCD 
camera. A 500 ns delay between the laser trigger and the detector activation was programmed to synchronize the laser 
and the detector. The intensifier was gated for 500 ns during which a 5 ns laser pulse was delivered to the tissues. An 
image was captured twenty times per second, integrated by internal software, and output to a screen once per second.  
This allows for real time fluorescence detection. Fluorescence images and spectra were acquired and processed with 
WinView (Roper Scientific) and OOIBase32 (Ocean Optics) software respectively. Reflection images were captured and 
processed with SimplePCI image analysis software (Compix).  
 

 
Figure 2: Hardware components of the hyperspectral imaging system 

 

3. SPECTRAL SIGNATURE EXTRACTION 

3.1 Registration of hyperspectral band images  
In order to obtain accurate spectral information of each pixel, all spectral band images must be aligned. Image 
registration is the process to find a geometric transformation of multiple images of the same scene taken at different 
wavelengths. The correspondence between the images is maximized when an image pair is correctly aligned. Mutual 
information9 (MI) is used as a metric for searching the offset of the band images along the horizontal axis. The MI 
measures the similarity of the two images in terms of the Kullback-Leibler distance. An image pair with maximum MI 
shows the best match between a reference image and an input image. The offsets along the horizontal axis are found for 



all spectral band images using the MI. Misregistration of the images will result in the decrease of the MI. Figure 3(a) 
shows the offsets obtained from a hyperspectral fluorescence image. The band image at the wavelength of 490 nm is 
used as a reference image due to its strongest fluorescence intensity. The input images with positive offset values should 
be shifted to the right for correct registration. Figure 3(b) demonstrates a registration example of two band images. The 
input band image (540 nm) was shifted left by the amount of offset (14 pixels) with respect to the reference image (490 
nm).  
 

450 470 490 510 530 550 570 590 610 630
-30

-20

-10

0

10

20

30

Wavelength (nm)

O
ffs

et
 (p

ix
el

)

Offset

 
(a) The offsets along the horizontal axis                 (b) Registration of the band images 

Figure 3: Spatial registration of hyperspectral band images. (a) Offsets along the x-axis caused by the AOTF at each wavelet,  
(b) Registration example of spectral band images with the wavelengths 490 nm and 540 nm 

3.2 Spectral signatures of mouse skin 
Tissues emit different amount of fluorescence intensity at different wavelengths of the electromagnetic spectrum. 
Spectral characteristics of the measured fluorescence in different wavelength regions yield a distinguishable spectral 
signature, making different skin types distinguishable. Figure 4 shows the relative fluorescence intensity of normal tissue 
and tumor as a function of spectral bands (wavelength). Normal tissues have higher fluorescence intensity on average 
than the tumor regions. Normal tissues have a peak fluorescence response near the wavelength 490 nm. Tumors also 
show strong responses between the bands 480 nm to 500 nm. The intensity difference between the two classes is large in 
the spectral range of 470-560 nm. Spectral characteristics of the pixels from the two categories can be used as the 
features for tumor detection.  

 
Figure 4: Spectral signature of the normal tissue and tumor  



4. SUPPORT VECTOR MACHINES FOR TUMOR DIAGNOSIS 

4.1 Spectral signature classification with support vector machines 
Support vector machine is a learning system based on the statistical learning theory10,11 SVM aims at producing a pattern 
classifier with maximum margin of class separation to maximize the generalization ability. The separating margin is 
defined as the distance between the classification boundary and the nearest data point of each class. Large separation 
margin minimizes structural risk of misclassification and improves classification accuracies for unseen data. Consider 
the problem of separating a set of training vectors that belong to two separate classes. Let xj be a column vector and 

 denote binary class label for x{ 1, 1}jy = + − j. The data is said to be linearly separable by the separating hyperplane 
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These can be combined into one set of inequalities: 

( ) 1 0t
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Then the separating margin between the two classes becomes to 2 w . To maximize the margin, the norm ||w|| needs to 
be minimized with the limitation given in (3). A Lagrange function is used to represent the constrained optimization 
problem:  
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where αj is called a Lagrange multiplier. After solving the criterion function, the discriminant function to classify a new 
pattern x can be represented by a small subset of support vectors xj:  
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Equation (5) indicates that the decision function depends on the inner product between the patterns. For not linearly 
separable cases, a nonlinear transform function ( )Φ ⋅  is used to map the input vectors to higher dimensional feature 
space, which is more likely linearly separable. Nonlinear decision boundaries in the input space will be mapped to linear 
decision boundaries in the feature space. The classification function can be represented by the kernel function 

 in the transformed feature space. The nonlinear transform function  needs not be 
specified. Using the kernel function, the discriminant function for a nonlinearly separable problem can be similarly 
written as 
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The optimal decision boundary for detecting skin tumors is obtained using the kernel SVM. In this paper, a Gaussian 
radial-basis function (RBF) kernel is used: 

( ) ( )2 2, exp / 2j jK σ= − −x x x x                              (7) 

where σ is the parameter that controls the width of the Gaussian kernel function. A practical problem for training an 
SVM is the choice of kernel parameters. An optimal parameter value is found for a specific dataset to reduce the risk of 
overfitting and therefore poor generalization. An optimal parameter is found by doing cross-validation in the training 
process. Classification was repeated using 25% training and 75% validation data randomly chosen. The parameter σ = 



0.1 was chosen as the optimal value that correspond to the lowest validation error. A SVM implementation12 is used to 
perform the SVM training and classification. 

4.2 Spatial filtering for the combination of spatial and spectral information 
In hyperspectral image processing, spatial information provides useful information to increase the accuracy for detecting 
the object of interest. Tumors are likely present in a form of ellipsoidal shapes, not isolated points, with homogeneous 
texture properties. A spatial filtering technique is proposed to combine the spectral and spatial information for increasing 
the classification accuracy. The filtering process removes the noise in the hyperspectral image and enhances the texture 
information. Fluorescence intensity at each pixel is replaced by the weighted average of the neighborhood. Before 
classification 
 
Filtering of a hyperspectral image with a filter mask w(s,t) of size m×n is given by the expression: 
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where w(s,t) denotes filter mask coefficients, a=(m-1)/2 and b=(n-1)/2. To generate a complete filtered image this 
equation must be applied for x = 0, 1, …, M-1 and y = 0, 1, …, N-1. A Gaussian filter mask is used to yield a weighted 
average of the pixels in a small neighborhood. Figure 5 shows an integer-valued 5×5 Gaussian filter kernel that 
approximates a Gaussian distribution with unit variance.  
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Figure 5: A 5×5 Gaussian filter mask 

5. EXPERIMENT RESULTS 

5.1 Test data description 
Hyperspectral fluorescence image samples are taken from the mouse skin using the Oak Ridge National Laboratory 
imaging system. The hyperspectral data consists of the size 165×172 pixels with 21 spectral bands ranging from the 
wavelength λ1 (440 nm) to λ21 (640 nm) with 10 nm spectral resolutions. A small area of interest is well illuminated and 
the fluorescence intensity of the background is uniformly low. Figure 6(a) is a reflectance image and Figure 6(b) shows a 
fluorescence image at the wavelength 490 nm from a mouse skin sample with a tumor spot. The region of interest (ROI) 
is segmented out of the background as in Figure 6(c). The U-shaped, bright area in the fluorescence image is normal 
tissue, and the gray part above the normal skin corresponds to the tumor. 
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Decision boundaries of the kernel SVM with Gaussian radial-basis functions are developed using the mouse skin 
samples selected randomly from the two classes. The SVM parameters are trained from 100 samples chosen randomly 
from each of the normal and tumor class. For testing, 2036 (normal) and 517 (tumor) samples are used.  
 

5.2 Performance comparisons 
The performance of the SVM classifier and the spatial filtering method are evaluated. Pixels of a mouse sample are 
classified by the use of SVM classifiers with and without spatial filtering. SVM classifier with a 5×5 Gaussian spatial 
filtering is tested. The overall accuracy13 is calculated as the total number of correctly classified pixels divided by the 
total number of pixels. The classification accuracies are summarized in Table 1. The Gaussian smoothing successfully 
classifies 514 tumor pixels with the classification accuracy of 99% for tumor. Normal tissues are classified as 83%. Most 
misclassified pixels of the normal tissue are on the edge of the ROI mainly due to poor illumination on the edge. The 
illumination leads the fluorescence intensity of the normal tissue in this area similar to the fluorescence intensity of the 
tumor. Experiment results clearly show that the spatial filtering enhances the best performance, which result in 86% 
overall accuracy, followed by using the original data (83%). In terms of the tumor accuracy, the neural network 
algorithm still exhibited the best accuracy (99%). The classification accuracy degrades from 83% to 56% after using 
feature extraction. This suggests that the SVM classifier can get better performance on high dimensional data. All these 
results demonstrate the efficiency of the information integration algorithm for the classification of hyperspectral image.  

Table 1: Comparisons of classification accuracies 

Classification Accuracies (%) Method Normal pixels Tumor pixels Normal Tumor Overall 
Ground truth 2036 517 - - - 
SVM without 

filtering 1651 466 81 90 83 

SVM with Gaussian 
smoothing 1687 514 83 99 86 

 
Figure 7 shows the classification results of the SVM-based classification. White pixels indicate the tumor region 
detected by the classifier while gray pixels denote normal tissues. In Figure 7(a), a large number of false positives and 
false negatives are present, especially along the edge of the ROI due to poor illumination. The SVM classifier with 
Gaussian filtering significantly improved the classification accuracies by reducing false positive and false negative 
pixels. 
 

        
                          (a) SVM classification               (b) SVM with Gaussian smoothing 

Figure 7: Classification results 

 
 



6. CONCLUSION 
This paper presents hyperspectral fluorescence imaging and an efficient analysis method for use in medical diagnostics 
especially in skin tumor detection. The proposed diagnostic method combines the hyperspectral fluorescence imaging 
and support vector machine pattern classifier to obtain high classification accuracy of skin tumors. The hyperspectral 
imaging system developed by the Oak Ridge National Laboratory is capable of capturing hyperspectral fluorescence 
imaging for skin cancer detection. Skin tumor is not as visually obvious as other pathological diseases since its signature 
appears as shape distortion rather than discoloration. This fact makes it difficult to detect skin tumor patterns from the 
images based on reflections. Fluorescence data captured by the hyperspectral imaging system contains a higher level of 
spectral details and thus provide a greater possibility of detecting tumors. In order to eliminate the spatial offset in the 
spectral band images, mutual information is utilized as a measure to find the offsets along the horizontal axis. The offsets 
found are used to bring the band images into spatial correspondence. A support vector machine with Gaussian radial-
basis function kernel provides a decision boundary with maximum margin of class separability. A Gaussian filtering 
integrates the spatial information by replacing the fluorescence intensity of each pixel by the weighted average values 
within a small neighborhood. Experiments show that this method achieved 99% classification accuracy for tumor tissue 
and 86% overall accuracy.  
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