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Visual Analysis of Eye State and Head Pose
for Driver Alertness Monitoring

Ralph Oyini Mbouna, Seong G. Kong, Senior Member, IEEE, and Myung-Geun Chun

Abstract—This paper presents visual analysis of eye state and
head pose (HP) for continuous monitoring of alertness of a vehicle
driver. Most existing approaches to visual detection of nonalert
driving patterns rely either on eye closure or head nodding an-
gles to determine the driver drowsiness or distraction level. The
proposed scheme uses visual features such as eye index (EI), pupil
activity (PA), and HP to extract critical information on nonalert-
ness of a vehicle driver. EI determines if the eye is open, half closed,
or closed from the ratio of pupil height and eye height. PA mea-
sures the rate of deviation of the pupil center from the eye center
over a time period. HP finds the amount of the driver’s head
movements by counting the number of video segments that involve
a large deviation of three Euler angles of HP, i.e., nodding, shaking,
and tilting, from its normal driving position. HP provides useful
information on the lack of attention, particularly when the driver’s
eyes are not visible due to occlusion caused by large head move-
ments. A support vector machine (SVM) classifies a sequence of
video segments into alert or nonalert driving events. Experimental
results show that the proposed scheme offers high classification
accuracy with acceptably low errors and false alarms for people of
various ethnicity and gender in real road driving conditions.

Index Terms—Driver alertness monitoring, driver drowsiness
detection, eye state, head pose (HP), support vector machines
(SVMs).

I. INTRODUCTION

RIVER drowsiness has been one of the major causes of

fatal car accidents. According to a 2012 poll conducted
by the National Sleep Foundation, one in five pilots admit that
they have made a serious error, and one in six train operators
and truck drivers say that they have had a “near miss” due to
sleepiness [1]. In 2008, the National Highway Traffic Safety
Administration estimates that 100 000 police reports on vehicle
crashes were direct results of driver drowsiness resulting in
1550 deaths, 71000 injuries, and $12.5 billion in monetary
losses [2]. Driver inattention might be the result of a lack of
alertness when driving due to driver drowsiness and distraction.
Driver distraction occurs when an object or event draws a
person’s attention away from the driving task. Unlike driver
distraction, driver drowsiness involves no triggering event but,
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instead, is characterized by a progressive withdrawal of atten-
tion from the road and traffic demands. Both driver drowsiness
and distraction, however, might have the same effects, i.e.,
decreased driving performance, longer reaction time, and an
increased risk of crash involvement.

Three main approaches have been developed to detect
driver inattention, i.e., physiological, driving-behavior-based,
and visual-feature-based approaches. Physiological approaches
involve analysis of vital signals such as brain activity, heart
rate, and pulse rate. As an example, Khushaba er al. [3]
developed a fuzzy mutual-information-based wavelet packet
transform model to estimate the drowsiness level from a set
of electroencephalogram, electrooculogram, and electrocardio-
gram signals. However, physiological approaches often re-
quire electrodes that are attached to the driver’s body, which
are intrusive in nature and, therefore, may cause annoyance
to the driver. Driving-behavior-information-based approaches
evaluate the driver’s performance over time. Based on the
variations in the lateral position, speed, steering wheel angle,
acceleration, and breaking, the system determines if the driver
is alert or not. Liang er al. [4] developed a real-time approach
to detecting distraction using the driver’s eye movements and
driving performance data collected in a simulator environment
called the in-vehicle information system. Then, the data were
used to train and test both support vector machine (SVM)
and logistic regression models to detect driver distraction. The
analysis by Liang et al. suggested that the SVM outperformed
the traditional approach of logistic regression in detecting driver
distraction. An advantage of this approach is its convenient
signal acquisition. However, they highly depend on the vehicle
type, driver experience, and the road condition. If a driver falls
asleep on a straight road, such systems may fail because the
car would not provide any significant information. The feature-
based approach analyzes visual features from the driver’s facial
images. Drowsy people often produce unique visual features
on the face such as eye blinking, yawning, and eye and head
movements. Hammoud et al. [5] proposed a driver drowsiness
detection system that estimates the status of the eyes in the
near-infrared spectrum. Moriyama et al. [6] estimated the eye
state by creating detailed templates of the shape and texture of
the eyelid. As a widely accepted visual measure for drowsi-
ness detection, the percentage of eyelid closure (PC) counts
the number of eye blinks of the driver [7]. More recently,
Jimenez et al. [8] have proposed a gaze fixation system based
on a stereo camera system to detect the driver’s distraction level
in a driving simulator. From the viewpoint of practical applica-
tions, visual-feature-based approaches are preferred since they
are natural and inherently nonintrusive to the driver.
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This paper presents visual analysis of eye state and head
pose (HP) using a single camera for continuous monitoring of
alertness of a vehicle driver without the use of additional source
of light. The proposed scheme finds in real time the eye and
pupil centers and HP angles from a face object in a live video
stream captured by a camera. The proposed method brings eye
state and HP together to make a decision if a driver is not alert.
We detect the face and the eyes using the AdaBoost algorithm
[9] followed by iterative thresholding. Candidate pupil regions
after thresholding are validated by a set of predefined geometric
constraints to locate the pupil even in varying illumination con-
ditions. Finally, the center of gravity of the pupil region finds
the center of the pupil. A facial-feature-matching algorithm
estimates three Euler angles of HP, i.e., nodding, shaking, and
tilting, using a generic 3-D head model aligned with a 2-D
face image. To avoid the error being accumulated from the
matching of facial features on the 3-D head model and the 2-D
face image, the matching process is reinitialized whenever the
face comes back to its frontal position. Then, we compute visual
features such as eye index (EI), pupil activity (PA), and HP
from a video segment of 4-s duration. EI and PA measure
eye closure and the rate of pupil movement over time. HP,
which is a linear combination of the number of video segments
with a large deviation of three HP angles, finds the amount of
head movements that accounts for drowsiness and distraction.
The t-test was used to validate the statistical significance of
individual features. The significance levels of the three HP
angles are used to scale the weights of the linear combination
of the HP angles. Compared with other approaches that only
use a discrete number of gaze fixation areas [8], the proposed
approach considers all directional head and eye movements
of the driver. An SVM classifier, which is trained with the
three visual features of EI, PA, and HP, is used to learn the
driving patterns of the driver to classify if the subject is either
alert or nonalert. The nonalert state represents that the driver
is either drowsy or distracted. Experiment results show that
the driver’s head and eye information helps achieve a better
performance for driver drowsiness detection. Experiments were
conducted using a total of 135000 video frames from five test
subjects of various ethnicity and gender in real road driving
conditions.

II. EYE AND PUPIL CENTER DETECTION
A. Pupil Center Detection

The proposed pupil center detection method tracks the pupil
center in real time. We first detect the face object in the scene
using the face AdaBoost technique, which is known as the
Viola—Jones algorithm [9], and adaptive template matching.
Although accurate, the AdaBoost algorithm is sensitive to face
rotation. Therefore, we implement adaptive template matching
to overcome the limitation of AdaBoost in detecting the face,
particularly when the head rotates. In adaptive template match-
ing, the previously detected face region is used as template 7.
In the next processing cycle, we match template 7" against each
pixel within a search window in the next image frame /. Then,
the normalized sum-of-squares difference S is used as a metric
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of match between the face template and the search region of the
face from the previous frame, i.e.,

> [T y) — L+ oy +y)

S(z,y) = ——= (1)
\/ S T2(aly) S Pz +al,y +y)
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where T'(z,y) and I(x,y) denote the brightness intensity of
template 7" and source image I at (x,y). The matched image
becomes a new template to be used for template matching in
the following frame.

To detect the center of the pupil, the detected face region is
divided into four quadrants to reduce the computational burden.
The top two parts are considered as the region containing the
eyes. To increase the resolution of the eye region, a candidate
eye image is upsampled by two. The binarized image is eroded
and normalized using morphological operators to reduce the
effect of illumination variations. The pixels of intensity below
a threshold are labeled as the pupil. An adaptive thresholding
scheme was used to minimize the effect of illumination over
time. An initial threshold is selected such that the threshold
is large enough to preserve the pupil area. Then, the image
is iteratively thresholded until eye geometric constraints are
satisfied. We created geometric constraints after analyzing the
physical characteristics of 1521 eye images [10]. The geometric
constraints pose the conditions on the shape of the eye that an
eye width is approximately twice the eye height and that a pupil
width is not larger than twice the pupil height. The pupil center
is then estimated by computing the center of gravity of the pupil
region. When more than one candidate pupil region exists, the
largest region is selected as the candidate region for the pupil.
For pupil region image I(x,y), pupil center (z.,y.) can be
found using the spatial moments defined as

Mpg = > _I(z,y)2"y". )
x Yy

We computed the pupil center as the first-order spatial moment
myo and mg; divided by the area mgg: x. = mio/moo and
Ye = Mmo1/mog. The center of gravity has shown better results
in determining the center of the pupil than the center of the con-
tour area, particularly under varying illumination conditions. In
Fig. 1(a), eyelashes and illumination often cause a long shadow
around the pupil blob to obscure the pupil. If we select the
center of the blob contour as the center, the pupil center would
be off center due to a nonconvex shape owing to a long tail of
the region. Taking the center of gravity is closer to the real pupil
center since it reduces the error caused by the tail. Even a closed
eye shows a candidate pupil region after thresholding due to a
dark region by shadow and eyelash. However, the region was
not considered as a pupil since the contour does not satisfy the
aspect ratio constraints.

B. Pupil Center Detection Results

We evaluate the accuracy of the proposed pupil center detec-
tion using the BiolD face database [10]. The BiolD database
consists of face images in a practical setting with various
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Fig. 1.
closed. (c) Closed.
TABLE 1
COMPARISONS OF PUPIL CENTER DETECTION ALGORITHMS
. . . Detection
Pupil Detection Methods Algorithm Rate
Jesorsky et al. (2001) [11] Adaboost 91.8%
Generalized Projection o
Zhou and Geng (2004) [10] Function (GPF) 94.8%
Asadifard and Cumulative Distribution 96.0%
Shanbezadeh (2010)" [12] | Function (CDF) e
Oyini Mbouna and Kong Adaboost & Adaptive 9729
(2011)" [13] Thresholding e

illumination conditions, backgrounds, and face sizes. The
database contains 1521 gray scale images of 23 different per-
sons in a 384 x 286 pixel resolution. Error dey. refers to the
relative deviation between the estimated and the ground truth
pupil centers, i.e.,

max (|Cleft — Chofit| | Crigt — érighto
|Cleft - C'right|

3

deye =

where |Cle; — C’]eft| and |Chight — C’right| denote the Euclidean
distances between the true pupil center positions Cleg, and
Clignt and the estimated pupil center positions é]eft and C’right.
We consider that the eye was successfully detected if the
relative error dey. is less than a threshold of 0.25, as used in
[10]. Table I shows the results obtained using the proposed
algorithm in comparison with the methods published using the
same BiolD database. The bottom two methods marked with *
did not use the images with eyeglasses in the database.

III. HEAD POSE ESTIMATION
A. HP Estimation

We compare a face image of unknown HP angle in a 2-D
scene with a 3-D face model rotated by known Euler angles
to estimate the HP angles. A 3-D head model is constructed
using the 3-D computer graphics software Blender [14]. The
use of a generic 3-D head model not only reduces the amount of
computation but provides continuous HP estimates in all three
rotation directions as well. We align and scale the 3-D head
model according to the position and distance between the two
eyes of the face in the 2-D image. The alignment of the 2-D face
and the 3-D head model is carried out during the first few

(b)
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Pupil center detection for three cases of eye state. The contour lines show detected pupil regions after applying adaptive thresholding. (a) Open. (b) Half

seconds when the driver maintains the face straight at the
camera.

From the mapping of the 2-D facial features in the image
and their corresponding points on the 3-D head model, we
determine the HP (rotation and translation) of the user using
the POSIT algorithm [15]. The relationship between a point
on the 3-D head model and a point in the 2-D image is
expressed as

X

(] fo O co||ri1 T2 T3 4 v
slv|=|0 fy cy||ra1 723 723 to 7 4

1 0 0 1 r31 T3z T3z i3 1

where (X,Y, Z) denote the coordinates of a 3-D point in the
world coordinate space, and (u, v) denote the coordinates of the
projection point in pixels. The camera matrix contains intrinsic
parameters such as image center (c,, ¢, ), scale factor (s), and
focal length (fy, f,) in pixels. The joint rotation—translation
matrix [R|t] contains extrinsic parameters 7;; and ¢;. The
POSIT algorithm is used to estimate the position in three
dimensions of a known object. The 3-D pose of an object in-
cludes three rotation angles (nodding, shaking, and tilting) and
translation. The POSIT algorithm requires image coordinates
of at least four noncoplanar object’s points. The 3-D model
coordinates of these points must be known as well. In this case,
the image coordinates of the object are the coordinates of the
detected features on the face, and the 3-D model coordinates
of these points are their corresponding points on the 3-D head
model.

To track the changes in the head position, we apply the
Lucas—Kanade optical flow method [16]. Optical flow finds
an estimate of the feature points between two video frames
extracted using the good features to track method [17]. The
number of features selected varies between 20 and 40. If the
number of features is greater than 40, the feature points are
not robust enough for tracking. For the features less than 20,
the tracking result becomes sensitive to the features. The HP is
updated after each movement and given in the form of a matrix
that can be viewed as a multiplication of three rotations: one
about each principle axis. Thus

R =R.(p)Ry(0) Ry (7). 5)

Given rotation matrix R, HP angles v, 6, and ¢ are then
computed by equating each element in R with its corresponding
element from the rotation matrix [18].
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TABLE 1II
MAE OF THE PROPOSED HP ANGLE ESTIMATION (IN DEGREES)
[llumination | Tilting | Shaking | Nodding
Uniform 3.779 3.943 4.834
Varying 5.054 6.334 5.315
Overall 3.940 5.161 5312
TABLE III
COMPARISON OF THE MAES OF HP ANGLES (IN DEGREES)
Head Pose
Estimation Initialization | Tilting | Shaking | Nodding
Methods
La Cascia et al.
(2000) [19] AUTO 33 6.1 9.8
[Cllgi‘ ctal. 2008) | \aNUAL | 392 | 404 | 671
Prasad and Aravind
(2010) [21] MANUAL 2.5 3.8 3.6
DeMenthon and
Davis (1995) [15] AUTO 5.27 6.00 6.23
Proposed Method AUTO 3.94 5.16 5.31

B. HP Estimation Results

We used the public database of Boston University (BU),
Boston, MA, USA [19], to evaluate the performance of the
proposed HP estimation scheme. The BU database contains
72 video clips of free head movements of various subjects along
with ground truth data of precise position and orientation of
the head measured using a magnetic sensor. A set of 45 video
sequences in uniform lighting conditions and a set of 27 videos
in varying illumination conditions are obtained. Each video
consists of 200 video frames at a rate of 30 frames per second.
Table II shows the results of the head estimation method in var-
ious illumination conditions. The estimated angles and ground
truth values are compared for all the 72 video data in terms
of the average mean absolute error (MAE). The average MAE
of tilting, shaking, and nodding angles were (3.779°, 3.943°,
4.834°) for 45 uniform illumination videos and (5.054°, 6.334°,
5.315°) for 27 varying illumination videos. The MAE decreased
by an average of 1.3° due to illumination variations.

The overall performance of the proposed HP estimation
scheme was similar and, in some cases, better than the other
algorithms. Table III compares the HP estimation approaches.
Our HP estimation method outperforms the DeMenthon and
Davis algorithm [15] and other algorithms using auto reinitial-
ization. The two manual initialization methods showed decent
performances; however, they map the features to a 3-D model
manually.

IV. DRIVER DROWSINESS DETECTION
A. Video Data Acquisition

We conducted experiments in a vehicle during the day with a
camera mounted on the dashboard. A total of 15 video clips
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were collected from five subjects of different ethnicity and
gender, i.e., African male (Subject 1), Asian female (Subject 2),
Caucasian male (Subject 3), Indian male (Subject 4), and
African male (Subject 5), with a study time of 15 min per
subject. The video data acquired have a resolution of 640 x
480 pixels at a frame rate of 30 frames/s. The video data for
alertness and nonalertness were created in real road driving
conditions. Each subject was requested to look straight for
the first 5 s and then drive alert, drowsy, or distracted for
the remainder of the trip. Each driver completes three driving
sessions, namely, alert, drowsy, and distracted. In the case of
alert, the subjects were recorded while driving 10 mi at a speed
varying from O to 65 mi/h on a road involving many cars and
stimuli. In the case of drowsy or distracted driving sessions,
the test subject was sitting on the passenger seat simulating to
be driving while another person was actually driving for safety
reasons. The camera was then placed in front of the passenger
seat at the same angle as the camera on the driver side. Similarly
to the alertness session, the subject was recorded being drowsy
or distracted for 10 mi of driving with car vibrations. Then,
each video was cropped to three scenes of continuous 5 min
long. The drowsy sessions involved very few road stimuli on the
highway, and the distracted driving sessions involved answering
to phone calls, multitasking, texting while driving, or reading
maps. As a result, each video session is 5 min long at a frame
rate of 30 frames/s. Each video session is divided into 75 seg-
ments. Each segment is 4 s long, corresponding to 120 frames
with a frame rate of 30 frames/s. The first 37 segments are
used for training, and the remaining 38 segments are used for
testing.

The ground truth of the alertness level was labeled using
a binary sleepiness scale such that a “0” is assigned to a
nonalert (drowsy or distracted) segment and a “1” to an alert
segment. The test subjects were requested to assess their level
of alertness. This information was mixed with the alertness
scores obtained from the opinions of four human experts. Those
five observers rated video segments of 4-s duration, which
corresponds to 120 video frames, and assigned “0” (nonalert)
or “1” (alert) to each segment. Then, using a majority decision,
each video segment is assigned to a ground-truth label that a
majority of observers agree on to each segment. An analysis
window of 4-s duration is used to process the extracted features
according to the driver’s manual of the State of Pennsylvania
[22], which recommends to the drivers to allow 4 s to reduce
the risk of getting involved in a collision. The chosen window
size is suitable for the driver drowsiness detection problem
because the time window is large enough to contain sufficient
information and small enough to capture the changes in driving
behaviors. Most drowsiness detection systems have a delay be-
tween the moment the driver starts his fatigue behavior and the
moment the system detects it. By choosing a window segment
as short as 4 s, the proposed method has a minimal delay.

B. Feature Selection

Five features obtained from the eye and HP are used to
determine alertness. We propose as new alertness detection
measures the EI and PA that describe the state of the eye and
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Fig. 2. Histograms of the eye features for Subject 4. (a) EI (b) PA.

the pupil. EI is defined as the ratio of the pupil height and the
height of the eye in pixels, i.e.,

[— Pupil Height

= ) 6
Eye Height ©

The pupil tends to show an isotropic shape when the eye is
open. When the eye is half closed, the eye region becomes
similar to a more rectangular shape. When the eye is closed,
on the other hand, the detected eye region becomes to a flat
and long shape that goes beyond the geometric constraint to be
a pupil. The thresholds for the EI are chosen to determine the
three states of the eye, i.e., open, half closed, and closed. We
determine that an eye is closed if EI < threshl, open if EI >
thresh2, and half closed if thresh1 < EI < thresh2. For example,
the thresholds are initially chosen for a subject shown in Fig. 1
as threshl = 0.28 and thresh2 = 0.33. In Fig. 1, the EI values
were 0.35(= 38/108) for an open eye, 0.29 (EI = 32/110) for a
half-closed eye, and 0.24(= 26/108) for a closed eye. Fig. 2(a)
shows the histogram of the EI for alert and nonalert states. For
the drowsiness case, the histogram shows a prominent bimodal
distribution with a second peak at approximately 0.15, which
corresponds to a closed eye. A major peak was observed at 0.33.
This reveals the fact that the drowsiness state involves more
video frames containing half-closed eyes.

PA measures the temporal activity of eye movements, which
gives useful information to determine drowsiness. The co-
ordinates (ps,p,) in pixels represent the pupil center with
the eye center as a reference point. The relative displace-
ment of the pupil between the two consecutive video frames
is (Apy, Apy), where Ap, = |p,(t+ 1) — p,(t)| and Ap, =
|y (t + 1) — p, (t)|. Then, the PA index is defined as the sum of
the average displacements of the pupil movements in horizontal
and vertical directions. When a subject is drowsy or distracted,
the PA value tends to be greater. Thus

PA = AB, + AB,. 7)

Fig. 2 shows the histograms of the eye features, i.e., EIl and PA.
The features reveal clear distinctions between alert and nonalert
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cases. The histograms are generated for all the video frames of
Subject 4 where a pupil center is detected.

PC is a popular metric for monitoring fatigue of the driver
and is even used by the U.S. Federal Highway Administration
[23]. PC finds the ratio of the number of video frames contain-
ing a closed eye and the total number of frames within a period
of time. Thus

_ Number of frames containing closed eye

PC = (8)

Number of total frames
We apply the t-test to select statistically significant features
and to reduce the dimensionality prior to the classification
process. The objective of the t¢-test is to test if a feature is
statistically significant by checking if the means of Class 1
(alert) and Class 2 (nonalert) are sufficiently separated in a
two-class classification problem. Let z;,7 = 1,2, ..., N denote
classification results of Class 1 (alert) with mean p; and y;,
i=1,2,...,N of Class 2 (nonalert) with mean uy obtained
from the feature. N denotes the number of samples used. The
classification result is either 1 for alert (A) or O for nonalert
(NA). Let the null hypothesis be

Hq:py — p2 =0. )
To test the null hypothesis, we compute the ¢-statistic, i.e.,

(T —7) — (1 — p2)

= 1

! 5./2/N (10
1 N N

2 -2 —\2

2 =573 (;(m — ) +;(yi —-7) > (11)

The next step is to compute acceptance interval D based
on significance level p. We pick p = 0.05, which means that
acceptance interval D is 95% of the ¢ distribution. On one hand,
if the ¢-statistic falls into the D interval, it means that the test
result agrees with the null hypothesis, and the feature is not
selected. On the other hand, if the ¢-statistic lies outside interval
D, it means that the test result rejects the null hypothesis, and
the feature is selected. The t-test result shows that all the six
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Statistical Significance

El PC PA ND SH TL
Features

Fig. 3. Statistical significance of the features using the ¢-test for all subjects.

features rejected the null hypothesis with statistical significance
and, therefore, are all selected for driver alertness detection.
Fig. 3 shows the statistical significance level of individual
features. The most significant measure was found to be EI,
which replaced PC since both features account for eye closure.

Changes in HP angles provide good information to determine
the drowsiness and distraction of the driver. When a person is
drowsy, the nodding angle is expected to be high compared with
a person that is fully alert and is keeping his head straight.
Therefore, we count the number of consecutive frames when
the absolute value of the nodding, shaking, and tilting angles
are greater than 15°, such as

HP = wiND + wsSH + w3TL (12)
where ND, SH, and T'L denote the number of consecutive
video segments of nodding, shaking, and tilting, respectively,
that exceed a threshold of 15°. When a person is distracted and
looking away from the road, the HP difference is expected to
be high compared with a person that is driving alert and staring
at the road up front. The reason why the HP is high when
distracted is because HP takes into account not only the HP
being large but the duration of consecutive frames the HP stays
large as well. The weights are proportional to the statistical
significance and are normalized (w; + ws + w3 = 1). Each
subject is then individually attributed weight values used for
both training and testing.

The feature selection results confirm that both eye features
and HP angles have statistical significance. However, the pro-
posed EI measure outperforms the widely used PC measure
with all test subjects. The PA measure records the dynamic
motion of the driver’s eye. The HP measure represents the
head movements from a linear combination of the rates of
nodding, tilting, and shaking angles that exceed 15°. Fig. 4
shows the clusters of the features in 3-D feature space of EI,
PA, and HP for Subject 1 and Subject 2. The features show a
good separation between the two classes. That clear separation
between the two classes indicates that the classifier has a good
chance to accurately distinguish the two classes.
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Fig. 4. Clusters of the features in 3-D feature space of EI, PA, and HP.
(a) Subject 1. (b) Subject 2.

C. Classification Results

Driver alertness detection is formulated as a two-class classi-
fier problem. Given expert scores associated with a member of
each class, the goal is to find optimal function f that separates
the two classes. The SVM finds the optimal decision boundary
with a maximum separating margin [24]. We assume that we
have a data set D of M points in n-dimensional space belonging
to two classes, i.e.,

D={(xy)li=1,....,M,x; €R" y; € {1,0}}. (13)

A binary classifier should find function f that maps the points
from their data space to their label space. The optimal hyper-
plane with the maximal separating margin is

N
F0) = iy K (xi,%) +b (14)
=1

where N is the total number of support vectors; x; denotes
the support vectors; b and «; are the solutions of the quadratic
programming problem, as defined in [24]; and K(x,y) is a
positive definite symmetric function that must satisfy Mercer’s
conditions. The training points that are closest to the optimal
separating hyperplane with o; > 0 are called support vectors.
All other training examples are irrelevant for determining the
optimal hyperplane. In this paper, we use nonlinear machines
to find the hyperplane that minimize the number of errors
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Decision boundaries of the SVM classifier for two nonlinearly separable classes using two features for Subject 1. (a) EI versus PA. (b) EI versus HP.

TABLE V
TYPE-I ERROR RATES FOR DIFFERENT COMBINATIONS OF THE FEATURES
Features Used S1 S2 S3 S4 S5 Average
PC only 4286 | 0.0 | 37.21 | 3.77 | 29.73 22.71
El only 2857 | 0.0 | 37.21 | 11.32 | 27.73 20.97
El+PA 250 [ 0.0 | 18.60 | 1.89 | 21.62 13.42
EI+PA+HP | 7.14 | 0.0 | 698 1.89 | 9.81 5.16

Classification S1 S2 S3 S4 S5 Average
NA/NA | 92.86 | 10000 | 93.02 | 98.11 | 90.19 | 9484
A/A 7843 | 9048 | 7220 | 100 | 9524 | 8727
NA/A 743 | 000 | 698 | 189 | 981 | 516
(Type I)
AINA o591 952 | 2780 | 000 | 476 | 1273
(Type I

for the training set. Kernel function K ( ) defines the nature
of the decision surface that separates the data. Based on the
nature of our data, we picked a nonlinear kernel function that is
equivalent to a radial basis function (RBF) classifier defined as

. 2
ki - (L2

g

(15)

where o2 denotes the width of the RBF kernel. Fig. 5 shows
classification boundaries using the SVM in 2-D feature space,
i.e., EI versus PA and EI versus HP. Fig. 5 is generated with the
alert and drowsy video segments of Subject 1. The solid line
represents a nonlinear decision boundary that maximizes the
separating margin from the boundary to the closest data points
(support vectors) of each class.

Table IV summarizes the classification results for every
subject. The first two rows indicate two cases of correct clas-
sification, where both actual and ground truth agree in terms
of the classification label. Rows 3 and 4 denote two cases of
misclassification, where actual and ground-truth classification
labels do not coincide. There can be two types of classification
errors.

Type-1 Error (NA/A): The driver was classified as nonalert
(NA), whereas ground truth is alert (A).

Type-II Error (A/NA): The driver was classified as alert (A),
whereas ground truth is nonalert (NA).

Type-I error is considered more significant since it represents
the case where the system fails to recognize that the driver

is actually nonalert. Based on those two types of errors, we
generate the confusion matrix for every subject individually and
then for everybody together using every feature, including EI,
PA, and HP. In this experiment, PC is not included because EI
is closely related to PC. Moreover, EI performs better than PC,
as shown in Table V. We observe from Table IV that the most
crucial error is in average 5.16% for each person, and in the
case of Subject 2, the crucial error is 0%.

The combination of eye and HP information performs better
than using only eye information. Table V presents Type-I error
rates of the SVM classifier results when using only a single
feature (PC or EI), when using only eye information (EI +
PA), and when using all three major features (EI + PC + HP).
Overall, EI performs better than PC. On average, EI has an
error rate of 20.97%, whereas PC has a higher error rate of
22.71% for the same group of drivers. In addition, it is clear
that using multiple features achieves better performance than
using a single feature. The combination of all eye information
(EI + PA) does not achieve the best performance. The addition
of a third feature HP achieves the best performance.

V. CONCLUSION

This paper has presented visual analysis of eye state and HP
using a single camera for continuous monitoring of alertness of
a vehicle driver. The proposed scheme extracts visual features
from the eyes and head movements of a driver in real outdoor
driving conditions. The t¢-test ranked the features in terms
of statistical significance. EI measures eye closures, PA finds
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dynamic motion of the eye, and HP calculates all directional
head movements. The three visual features, namely, EI, PA,
and HP, are extracted in every video frame and averaged for a
video segment of 120 frames or 4 s, following the “four seconds
rule” according to the Pennsylvania Driver’s Manual [22]. Four
experts and the driver rated the video segments and attributed
a label to the alertness level. Then, the final class label was
obtained using majority voting. An SVM classifier was then
used to identify the alertness level of each driver for every video
segment of 4 s. The classification results indicate that combin-
ing eye and head information achieves the highest classifica-
tion accuracy. Using the three statistically significant features,
namely, EI, PA, and HP, the SVM classifier shows a low Type-I
error, which is more critical than a Type-II error or a false alarm.
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